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Abstract

In this project, we attempt to provide a rigorous, empirical study of e-commerce A/B
testing strategies. We perform a meta-analysis on 2,732 A/B tests conducted by 252 e-
commerce companies across seven industries over the course of three years. While there is
much interest in the field of digital experimentation generally, little is known empirically
about the testing strategies of firms in real-world environments and how these strategies
are related to business outcomes. Our dataset gives us unique insight into what firms are
experimenting with on their websites and which of these strategies are associated with
larger experimental effect sizes. We develop a framework for quantifying the effect of
two different experimental factors on an intervention’s ultimate effect size: the type (or
content) of an experiment and its location within a website’s conversion funnel. After pro-
viding a descriptive analysis of A/B testing practices among the firms in our sample, we
exploit the metadata in our dataset to classify the experimental interventions using this
framework. We find that experiments involving price promotions and those targeted on
category or product listing pages are associated with the largest effect sizes, relative to
other experiment types in our sample. We then attempt to identify heterogeneity in the
effectiveness of different types of interventions at different stages of the conversion fun-
nel. We find evidence that consumers’ response to different types of promotions depends on
where those promotions are targeted within a website’s architecture. In particular, we find
that promotional interventions on product prices are most effective early in the conversion
funnel, whereas shipping-related promotions are most effective late in the conversion fun-
nel (on product and checkout pages). As a unique, large-scale, cross-firm meta-analysis
of empirical experimentation practices, this project not only provides practical insight for
managers, but also makes a theoretical contribution to the e-commerce literature by docu-
menting and quantifying how multiple dimensions of website design shape online shopping
behavior.



1 Introduction

Recent technological solutions have dramatically lowered the cost of conducting digital ex-

periments. The enterprise software market is now awash with low-cost, easy-to-install testing

tools from companies such as Optimizely, HubSpot, Adobe, and Google (among many others).

While large companies with significant resources have been conducting online experiments

for years, the advent of these new tools has dramatically increased the availability and popu-

larity of A/B testing among firms of all sizes. As such, managers are increasingly turning to

A/B tests to make objective decisions backed by statistical theory.

Though a large number of researchers have used the proliferation of these technologies

to test their own hypotheses, there has been much less focus on how firms natively use A/B

testing platforms in the course of everyday operation. But as A/B testing makes its way

into mainstream business practice, there is a growing demand for insight into how to ex-

ploit these technologies and an increasing need for researchers to examine these tools from a

strategic—rather than purely technical—perspective. In its current state, academic research

provides little insight into basic questions about real-world A/B testing practices: What kinds

of experiments do companies run? What is the distribution of effect sizes in online experi-

ments? Which types of experiments have the largest effect sizes? How can firms better target

their experiments to increase conversion rates? While there is much interest in the field of

digital experimentation generally, little is known empirically about the testing strategies of

e-commerce companies, let alone which strategies may be most effective.

In this project, we attempt to answer these questions by providing a rigorous, empirical

study of e-commerce A/B testing practices. To accopmlish this, we perform a meta-analysis

on 2,732 A/B tests conducted by 252 e-commerce companies across seven industries over the

course of more than three years. We are able to exploit the metadata in our sample and an-

alyze experimentation strategies from multiple perspectives. We first use this metadata to

characterize the content of the experiments in our sample. We then classify the interventions

associated with each experiment into several high-level categories that are applicable to the

majority of e-commerce websites. We attempt to measure the effectiveness of these various

types of interventions on customer conversion rates by comparing the average absolute effect
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sizes of the most common interventions used in online experiments. We find that experiments

involving price promotions and those targeted on category or product listing pages are as-

sociated with the largest effect sizes, relative to other experiment types in our sample. We

then investigate the treatment heterogeneity of different types of interventions at different

stages of the conversion funnel. and find that promotional interventions on product prices are

most effective early in the conversion funnel, whereas shipping-related promotions are most

effective late in the conversion funnel (on product and checkout pages).

This work not only provides key insight for both describing and informing the A/B testing

strategies of a diverse set of companies, but it also has important implications for understand-

ing online consumer behavior and optimizing the customer conversion funnel of e-commerce

websites.

2 Background & Related Literature
As the practice of A/B testing has grown in popularity over the last decade, there has

emerged academic interest in both the methodology and empirical practice of digital exper-

imentation. However, this literature largely focuses on how to do digital experiments, with

relatively little to say about what to experiment on. This bias toward theoretical know-how

has left a gap in our understanding of how the characteristics of real-world interventions con-

nect to business objectives. We attempt to provide some insight into the nature of empirical

e-commerce experiments and also study which factors have the largest influence on test out-

comes. This motivates the development of a classification framework, in which we categorize

e-commerce interventions along two dimensions: experiment type and experiment location.

To contextualize and inform this analysis, we will review several related bodies of existing

research. We first summarize related literature on digital experimentation and A/B testing

and then turn to the existing research on various factors that are known to drive purchasing

behavior in e-commerce. We also highlight the importance of how the placement of an inter-

vention affects its performance by discussing the existing research on how consumer behavior

can vary throughout the marketing conversion funnel. Given the diverse body of work that

has been done on these topics, we see our project building upon—and hopefully contributing

to—existing research in statistics, information systems, human computer interaction, and

marketing.
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2.1 Digital experimentation & A/B testing

While randomized controlled trials have been used by firms and researchers for more than

a century, experimentation in the online environment presents a distinct set of opportuni-

ties and challenges that has motivated several recent developments related to A/B testing.

Extremely large sample sizes, the presence of rich demographic and technographic data on

participants, instantaneous data collection, and the ability to deploy many different experi-

ments simultaneously are all features that distinguish modern A/B testing from older forms

of experimentation. New methodological research has emerged to exploit these novel features

of the online testing context, including papers on identification of heterogeneous treatment ef-

fects (Taddy et al., 2016, Wager and Athey, 2017), targeted experimentation (Liu and Cham-

berlain, 2018), sequential testing (Johari et al., 2015), and experimentation at large scales

(Kohavi et al., 2013, Xu et al., 2015).

Another unique aspect of A/B testing that has drawn the interest of some researchers is

how inexpensive and easy it is to test many different interventions in a short period of time.

This characteristic is in stark contrast to the context in which classical randomized controlled

trials were historically developed; in agriculture, medicine, and even most academic research,

the hypothesis is given and an experiment is conducted to answer a very clear question. How-

ever, the cost of digital experimentation is so low that marketers have a preponderance of

interventions that could be tested with little guidance on which of these interventions should

be tested. These questions, as opposed to being concerned with statistical methodology, seek

to guide firm’s experimentation strategy. There is a small but growing stream of research

on this topic. The most closely related work in this literature includes a recent study that

develops a theoretical framework for addressing the challenge of an experiment-rich regime,

in which the number of potential hypotheses is so abundant that it is the observations them-

selves that are actually more expensive—that is to say, there are more potential experiments

to run on a website than could ever be tested with enough observations to yield statistical

significance (Schmit et al., 2018). In a different study, the strategic problem of determining

an optimal experimentation strategy in terms of sample size is considered in (Azevedo et al.,

2018). By developing a theoretical model of the distribution of effect sizes and analyzing over
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1,500 experiments at Microsoft Bing, the researchers find that the platform can expect higher

returns by running a higher number of low-powered experiments rather than a low number

of high-powered experiments.

2.2 E-commerce & Website Design

Apart from the growing literature on digital experimentation, this project is also related

to the existing body of work in information systems, marketing, and human computer in-

teraction on how various factors in website design and marketing affect consumer behavior.

Researchers have shown that price promotions (Zhang and Krishnamurthi, 2004, Zhang and

Wedel, 2009) and shipping fees (Lewis, 2006, Lewis et al., 2006) can have significant effects

on customer conversions in e-commerce settings. The literature on price partitioning has also

shown that consumers respond differentially to changes in product price vs. shipping price

(Chatterjee, 2011, Hamilton and Srivastava, 2008). Aside from price-based interventions,

there is an existing body of work in information systems and human-computer interaction

that studies how various non-marketing aspects of website design affect online behaviors. In-

deed, “usability” is known to be a major factor in how users assess the quality of a firm’s web-

site (Agarwal and Venkatesh, 2002, Venkatesh and Agarwal, 2006). Several studies attempt

to analyze how specific website characteristics affect user behavior; this includes research on

page loading times (Galletta et al., 2006), presentation flaws (Everard and Galletta, 2005),

and image characteristics (Hausman and Siekpe, 2009, Zhang et al., 2016). A large-scale

study soliciting user comments about factors that affect website credibility found that the

“design look” was the most prominent (Fogg et al., 2003). In this study, elements such as

overall aesthetic, spacing, sizing, colors, and fonts were all coded as reflecting the design

characteristics of a website.

2.3 Marketing Conversion Funnel

In addition to studying how various types of interventions affect online shopping behavior,

our project will also examine the role of an intervention’s location within a website’s architec-

ture. To motivate this analysis, we build upon the “conversion funnel” framework, which is a

ubiquitous concept in both the academic and industrial literature on digital marketing. There

are many ways this concept has been operationalized in existing research, but a number of

studies across different contexts have demonstrated that the effectiveness of marketing in-

4



terventions depends on where individuals are within their customer journey. One technique

for studying the marketing funnel is to use observable customer outcomes as proxies for their

position in the funnel. In a meta-analysis of many online advertising experiments, Johnson

et al. (2017) uses site visits and conversions as proxies for middle and late funnel stages; a

similar approach is taken in Braun and Moe (2013). In a B2B setting, Jansen and Schuster

(2011) uses the number of customer interactions, quotes, and orders to capture the progress

of a lead down the funnel. In a grocery store setting, Seiler and Yao (2017) operationalizes

different funnel stages by using aisle visits and purchases as dependent variables.

An alternative approach for modeling the conversion funnel is to use individuals’ observ-

able characteristics as proxies for their latent psychographic funnel state. This method is

based on the notion that a customer’s position in the funnel is determined by their internal

thought processes and intentions. Traditionally, words used to characterize different funnel

stages across both academic and industrial literatures describe an individual’s internal state:

“awareness”, “consideration”, “decision”, “loyalty” (Court et al., 2009, Lavidge and Steiner,

1961). Studies in this paradigm are often designed to segment or target individuals in differ-

ent conversion states with various marketing interventions (Abhishek et al., 2012, Moe, 2003,

Netzer et al., 2008).

Though our study related to this body of work, the unique nature of our context requires

us to introduce an alternative way of operationalizing the conversion funnel. While prior

literature has analyzed the conversion funnel using different outcomes or individual-level

characteristics, our meta-analytic approach means the primary unit in our study will be in-

terventions themselves. Rather than asking how an intervention or a customer’s latent state

affects intermediate outcomes, our dataset allows us to investigate how an experiment’s in-

trinsic characteristics affect the primary outcome of interest in A/B testing (purchase behav-

ior). Based on the way firms label their experiments, we will motivate a way of thinking

about the location of an experiment within a website’s architecture as a marker of its “loca-

tion” within the conversion funnel. Analyzing the experiments in our dataset this way also

maps onto the user experience of most A/B testing platforms, which requires firms to spec-

ify a page (or set of pages) on which an intervention will take place. We will explore this

phenomenon more formally in our analyses below.
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In sum, this project is able to shed new light on experimentation strategy, website design,

and consumer behavior in the e-commerce conversion funnel. We build on existing research on

these subjects from several disciplines, but also believe this project represents a unique contri-

bution to the existing literature. In contrast with prior studies, this project will be comparing

multiple types of marketing interventions simultaneously and comparatively. Furthermore,

insight into the exact nature of the interventions in A/B testing datasets has been identified

as a key limitation in the previous large-scale analyses of online experiments (Peysakhovich

and Eckles, 2017). However, in our research context, we have access to a set of metadata

that provides us information about the nature of the interventions being investigated in our

sample. This allows us to analyze A/B testing practices at a granular level, which gives us

the unique opportunity to connect these various streams of research. Additionally, one char-

acteristic of this study that distinguishes it from the previously cited literature is its use of

data from thousands of experiments by hundreds of different firms. As such, we believe the

findings of this study and the associated managerial insights can be expected to generalize

quite broadly to a large number of e-commerce companies in a way that micro-analyses of

individual firms often fail to do.

3 Data & Descriptive Analysis

3.1 Data Collection

Provenance. Our data has been collected from a SaaS-provider of A/B testing technology

and services (“the platform”). Like many other platforms in this space, our partner is a third-

party technology service that allows websites to conduct randomized controlled trials on their

online customer base. To use the service, firms go through a relatively minor integration

process that involves inserting a Javascript snippet into their website’s code that (1) makes

it possible for the testing platform to manipulate what customers see in real-time and and

(2) measure customer responses (time on site, pageviews, whether something was purchased,

etc.). After this snippet is installed, firms can log into the testing platform’s website where

they will see a dashboard that allows them to create new experiments and see the analytics

associated with ongoing and past experiments. To create a new experiment, firms can either

use the platform’s point-and-click editor or custom Javascript that allows them to manipulate

essentially any element on their website. As we will describe below, these manipulations
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are often new promotions or small changes to a site’s visual elements and layout. Using the

platform, firms will then choose how much of their web traffic to experiment on and specify

any technographic targeting conditions that can limit experiments to particular segments of

their customer base (e.g., mobile device users, returning customers). Once an experiment

begins, the platform automatically allocates incoming website visitors to a randomly selected

treatment arm and metrics about each visitor’s behavior are reported back to the platform.

Using the platform’s reporting dashboard, firms can then see the analytics associated with an

experiment and the results of standard statistical tests comparing the treatment groups on

various outcomes of interest.

Inclusion Criteria. We have collected the results of all experiments conducted on the plat-

form by US-based firms between January 2014 and February 2018. We limited our analysis

to experiments with only two treatment groups. This was motivated by the fact that two-

condition experiments are the most common type of intervention on the platform and that

requirement allows us to cleanly identify the intended intervention being tested in a given

experiment. We also selected experiments for which the firm specified “conversion rate” as

their primary outcome variable. A “conversion” in this context occurs whenever a visitor com-

pletes a purchase (of any amount) on the site. This is easily the most common outcome firms

specify as their primary dependent variable, as nearly 90% of the experiments in our popula-

tion have this set as their goal metric. Lastly, we have only included experiments that have at

least 30 observations in each treatment group and at least 10 observations for each outcome

(conversion, no conversion). This last requirement matches the testing platform’s minimum

data requirements before they report the results of any statistical tests to the firm. The re-

sulting dataset contains 2,732 experiments from 252 unique firms. An important feature of

our sample is that 100% of the websites have some type of e-commerce checkout process. Thus

all conversions in our dataset involved a monetary transaction for some good or service. While

this limits the generalizability of our results to other sectors (e.g., digital media sites, whose

primary conversion metric may be email sign-ups), this maximizes the value of our insights

for e-commerce companies.
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3.2 Firm Level Characteristics

Within the population of e-commerce companies, our data contains a significant degree of

heterogeneity in the size and type of firms being investigated. It includes many modestly-sized

firms with daily traffic of less than 100 visitors, but it also includes some of the largest brands

and e-commerce websites in the United States (with daily traffic exceeding 100,000 visitors);

16.7% of firms in our dataset are publicly listed. We are also able to use a business intelligence

service1 to identify the industrial sector of firms in our sample, which we have shown in Table

1. The largest sector in our dataset by far is consumer discretionary websites (149), which

mostly includes websites selling fashion and clothing accessories. We also have 51 websites in

the consumer staples space (e.g., food and household items) and 27 classified as information

technology (mostly firms that sell software and technology services). A portion (21) of firms

are in typically B2B industries such as the healthcare, telecommunications, industrials, and

financials; 29 firms in our sample could not be matched.

We have generated plots for some high-level statistics to help visualize some of the most

important features of our dataset. Figure 1a displays the distribution of experiment counts

by firm. The majority of firms in our sample (58%) have fewer than 5 experiments; the firm

with the most number of experiments accounts for 75 of the observations in our dataset.

We do not directly observe the volume of traffic associated with each website in our sample.

However, we are able to approximate the daily traffic of each website by using the number

of sessions (i.e., customers or observations) throughout the duration of each experiment to

calculate an imputed velocity of web traffic over a 24-hour time period. We then average this

value across all experiments by each firm to arrive at an estimation of how much daily traffic

each website receives; this distribution is plotted in Figure 1b (log scale). As can be seen, the

vast majority of firms have daily traffic between 1,000 and 100,000, with the primary mode of

the distribution near 10,000 daily visitors.

3.3 Experiment Level Characteristics

We have also calculated some summary statistics to better understand the nature of the

individual experiments in our sample. The average number of sessions in an experiment (i.e.,
1We used a database developed by Clearbit to match the domains of the firms in our sample to existing public

records to obtain these data.
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Figure 1: Histograms of Firm Level Characteristics

(a) Distribution of Experiments Counts per Firm (b) Distribution of Imputed Daily Traffic by Firm

the number of website visitors for which an observation was made during the test period) is

185,540; the distribution of session counts is extremely skew with a standard deviation of

365,099 sessions (see Figure 2a, log scale). The average experiment in our sample runs for

42.4 days, with a sample standard deviation of 44.4 days (Figure 2b).

3.4 What types of experiments do e-commerce firms run?

3.4.1 Language of A/B Testing: Unstructured Text Analysis. We now turn to offer a partial

answer to the question, “What are firms experimenting with on their websites?” To do this, we

will examine the textual metadata firms use to describe the nature of their intervention. The

Figure 2: Histograms of Experiment Level Characteristics

(a) Distribution of Session Counts by Experiment (b) Distribution of Experiment Durations
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Table 1: Top Words in A/B Test Descriptions

Word Frequency Number of Firms Using Word

banner 556 95
free 212 57
offer 206 46
sale 196 49
top 172 54
nav 167 42
homepage 167 54
shipping 150 42
countdown 149 23
email 142 41
promo 142 41
show 126 32
checkout 119 27
cta 117 26
split 116 55
mobile 111 48
cart 111 44
product 110 41
day 101 40
header 91 27

testing platform allows firms to give both titles to their experiments and descriptions for each

treatment group. A representative example of the text firms provide in these fields would be,

“Top Banner Shipping Test” for the experiment title and (“Control”, “Free Shipping”) for the

description of the two groups. To provide some insight into the language firms use to describe

A/B tests in our entire sample, we calculated word frequencies in the entire corpus of exper-

iment titles and descriptions. We removed common English language stopwords, numbers,

any company-identifying words, and the most common non-descriptive words in our sample:

“test”, “control”, “new”, “version”, “page”, “html”, “css”, “javascript”. We then counted the

number of times the remaining words appeared in our sample and also the number of unique

firms that used each word. We have displayed the top 20 words by frequency in Table 1.

We highlight two observations about the words that commonly appear in our sample. First,

it appears that the majority of A/B tests are fairly incremental changes to a website’s existing

design. By far the most common word in our sample is "banner" which, in the language of

web design, most frequently refers to an image placed above or to the side of a website’s
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navigation that contains seasonal messaging or sales information. Second, we can see firms

often use words to describe the location of their intervention (“homepage”, “nav”, “checkout”)

or the nature of the intervention (“free”, “promo”, “cta”). We build on this observation and

formalize this distinction in the following section.

3.4.2 Feature Extraction & Classification: Structured Text Analysis. To facilitate a mean-

ingful quantitative analysis of our dataset, we now attempt to provide a more structured

classification of the most common experiment types in our sample. In particular, we set out to

exploit the textual metadata described above and categorize the experiments in our sample

into high-level groups that are meaningful to compare from a theoretical and practical stand-

point. We will draw on the marketing and website design literature referenced earlier to

analyze the effectiveness of various intervention types that are found in our dataset. As refer-

enced in Section 2.2, both marketing/promotional and design/usability aspects of e-commerce

websites are known to play significant roles in influencing user behavior. At the same time,

prior literature has highlighted the importance of funnel stage when evaluating the effective-

ness of various interventions. As such, we will classify experiments in our dataset along these

two high-level dimensions: experiment type and experiment location.

Experiment Type. Building on the literature cited in Section 2.2, we distinguish between

three primary types of experiments our analysis. Given the centrality of price as a driver

of economic behavior, we believe it is important to distinguish between interventions that

affect purely aesthetic parts of the e-commerce experience and those that affect prices. Thus

our first category of experiments will be non-promotional design interventions. To identify

experiments of this type, we cross-referenced the metadata of each experiment with a list of

design-related keywords that are commonly used in the online user experience literature (see

Table 2). Additionally, we wanted to study the effects of interventions that affect pricing which

are quite common among our sample. However, the final price consumers pay can be affected

by both adjustments to the list price of a given product or adjustments to the shipping costs.

Since we know from the price partitioning literature that consumers often respond differently

to these interventions, we separated them out in our analysis. Thus our second and third

experiment type categories are those involving promotional (i.e., list price adjustments) and

shipping-related interventions.

11



Table 2: Experiment Type Classification

Class Incidence Sample Keywords
Design 1,542 “button”, “cta”, “hero”, “image”, “text”, “color”, “layout”, “show”, “hide”
Promotion 415 “promo”, “sale”, “deal”, “X% off”, “discount”
Shipping 268 “shipping”, “delivery”, “FS” (abbrevation for “free shipping”)

We have applied this coding scheme to our data in way that allows an experiment to be-

long to one (and only one) of these three categories. Any experiment that matched for both

“design” and “promotion” keywords was counted as “promotion”. Furthermore, any experi-

ment that matched for both “promotion” and “shipping” keywords was coded as “shipping”.

(This is because an experiment titled “50% off shipping” would match for both “promotion”

and “shipping” categories, but the promotion is clearly tied to the shipping costs. We could

find no examples of an experiment in which a price promotion and shipping promotion were

targeted simultaneously.)

Experiment Location. As described in 2.3, we know that different marketing interventions

can have differential impact depending on where they are targeted in the conversion funnel.

A useful way for thinking about the conversion funnel in the context of e-commerce design is

to map different aspects of a website to different stages in the online conversion process. Per-

haps the most natural phase of the conversion funnel on any website is the homepage, where

almost all website visitors start their interactions with online merchants. As such, homepage

interventions will serve as our baseline “early funnel” class of experiments. In coming up with

other ways of mapping website elements onto funnel stages, we draw upon the work of Moe

(2003) and Song and Zahedi (2005). In particular, both papers distinguish between behaviors

having to do with browsing and searching and those concerning purchase deliberation, facil-

itation, and checkout. Thus, we define one funnel phase as experiments targeting “product

listing pages” or “landing pages” (as they are commonly referred to in the web design indus-

try); these are pages that list many products at once within a given category (e.g., “men’s

pants” and “women’s accessories” are common landing pages in fashion retail). Interventions

on these pages affect consumers who are in the process of searching and filtering the prod-

uct listings on a website. We then operationalize experiments targeting the last phase in the

e-commerce funnel as those that manipulate elements on individual product listing pages or

in the checkout process. These interventions are interpreted as affecting customers who are
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Table 3: Experiment Location Classification

Class Incidence Sample Keywords
Sitewide 418 “sitewide”, “navigation”,
Homepage 354 “homepage”, “HP”
Category 148 “listing page”, “landing page”, “plp”
Purchase 248 “details page”, “pdp”, “cart”, “checkout”

actively deliberating about or committing to the purchase of a given item. Lastly, there are a

number of web design elements that appear on every page; these include the website header

at the top of the page, the navigation menu, and the footer at the bottom of the page. Because

it doesn’t make sense to think of these as targeting users at any particular phase of the con-

version funnel, we consider manipulations of these sitewide elements as their own category

of experiments. In total, we have four distinct experiment locations: sitewide, homepage, list-

ing, and purchase. The incidence of experiments in each of these funnel categories and the

keywords used to identify them in our dataset are shown in Table 3.2

Having developed this classification scheme and labeled the experiments in our dataset

using their titles and descriptions, we will now ask if different experiment types systemati-

cally vary in their effectiveness. We will try to quantify the average effect sizes of experiments

in our sample across both experiment type and location. Importantly, we will attempt to iden-

tify how the effectiveness of different types of interventions varies across different stages in

the e-commerce conversion funnel. However, there are several important subtleties in our

dataset that are important to model correctly to ensure we are identifying the right effects

in our analysis. We will address some of these challenges in our model setup below and then

report on our findings about how experimental effects vary across the conversion funnel.

4 Meta-Analysis of Experimental Outcomes

4.1 Aggregate Analysis

As mentioned earlier, the stated primary objective of all A/B tests in our sample is to

increase a website’s conversion rate, i.e., the proportion of customers who buy something

out of the entire population of website visitors over a fixed period of time. As such, the main
2A careful reader will notice we have not mapped the most common word in our dataset, “banner”, to any

category. This is because, by itself, an experiment testing a banner could be changing the promotional information
contained in the banner or changing the design of the banner without adding any new information. A banner could
also be something that is placed throughout the entire website or only a subset of pages. Thus, by itself, the word
“banner” does not resolve much uncertainty in placing an experiment in either the type or location dimension.
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dependent variable associated with each experiment is its measured effect size—or conversion

rate “lift”, as its known colloquially in digital marketing. To define this outcome concretely,

consider a given experiment (indexed by i) and its two associated treatment conditions, t ∈

a, b. In our dataset, we observe both the number of conversions (represented by cti) and total

sessions (represented by nt
i) in each of the two treatment conditions for each experiment in

our sample. The observed “effect size” of an experiment is then defined as the difference in

mean conversion rates between the two treatment conditions: δ̂i := cai /n
a
i − cbi/n

b
i .

One limitation in our dataset is that we cannot consistently identify the control condition

in many of our experiments. That is, while we know whether individuals are either in treat-

ment arm a or b, we do not always know which treatment arm represents the intervention

and which represents the control group. Furthermore, an intervention may not even have a

meaningful “control” group; this is because interventions in one treatment condition can be

positive, negative, or lateral changes compared to interventions in the other treatment condi-

tion. For example, an experiment with a title of “20% promo test” may be adding or removing

promotional information, relative to the status quo version of the website at time of the in-

tervention. So while we will know this experiment has something to do with promotions,

we usually cannot identify the exact intervention being tested. This causes the distinctions

between treatments a and b to vary arbitrarily across experiments; as such, the sign of δ̂i

also varies arbitrarily. This can be resolved by considering the absolute effect size of each ex-

periment, |δ̂i|, rather than the signed effect size. Given that the distribution of effect sizes is

extremely skew (tightly clustered around zero), we will also be working with the log-transform

of absolute effect size in subsequent analyses: yi = log |δ̂i|. We have plotted the distribution

of observed effect sizes in our sample in Figure 3 (left panel), along with the distribution of

absolute (middle panel) and log-absolute effect sizes (right panel).

Before proceeding to examine heterogeneity across different experiment types, there are

several characteristics of the aggregate effect size distribution that are worth remarking on.

For one, the typical effect size observed in an A/B test is very small: the median (absolute)

effect size is just 0.1%, with the mean slightly higher at 0.7%. It is notable that for half

the experiments in our sample, the interventions failed to move the conversion rate (in any

direction) by more than one tenth of one percent. These figures suggest a large degree of skew
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associated with the distribution of effect sizes. Indeed, the shape of the effect size distribution

is a central theme in the work of Azevedo et al. (2018), cited earlier. Using data from Microsoft,

the authors find a very similarly skewed distribution of effect sizes; they use the shape of their

distribution to argue that it is better to run a large number of low-powered experiments to find

the small number interventions with outsized returns. Our sample, which has data from more

than 250 different firms, appears to be consistent with this finding. Indeed, the distribution of

effect sizes in our sample appears to almost perfectly follow the classic “Pareto principle”: 20%

of the experiments in our sample account for 81% of the lift aggregated across experiments.

This relationship can be seen in Figure 4, in which we have ordered the effect sizes from

largest to smallest (left panel) and then calculated the cumulative sums by percentile (right

panel).

4.2 Heterogeneity Across Experimental Types

Having documented the heterogeneity of experimental interventions in our dataset in Sec-

tion 3.4, we now turn to the question of whether these different strategies can be linked to a

test’s outcome. This analysis will not only provide practical insight for managers when deter-

mining their testing strategies, but it also makes a theoretical contribution to the e-commerce

literature by documenting and quantifying how different factors drive online shopping be-

havior. To investigate this topic, we will be performing a meta-analysis on the effect size of

experiments in our sample. Specifically, we will ask how the intervention types identified

earlier are related to an experiment’s absolute effect size. We already documented why we

discard the sign of the effect sizes in our sample, but—before proceeding to the model defini-

tion itself—it is worth taking the time to clearly delineate how this definition of our dependent

Figure 3: Distribution of experimental effect size and its transforms in our sample
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Figure 4: Distribution of Absolute Effect Sizes by Percentiles

variable affects the interpretation of our model and its parameter estimates.

While we lose some information in our data by discarding the direction of each experi-

ment’s effect size, we also gain the ability to aggregate data across experiments by interven-

tion type. This is particularly useful in the context of a cross-firm, cross-experiment meta-

analysis. To consider this concretely, consider a scenario in which two websites are testing an

intervention that increases the size of their product images. Relative to a baseline status quo

control condition, suppose larger product images lift conversions for Website A (positive effect

size), while smaller product images may be better for Website B (negative effect size). If we

attempted to simply average these signed effects (in this over-simplified, stylized model), we

would find that manipulating product images has no effect on conversion rates. But by taking

the absolute values, we are instead able to say that image manipulations do have a significant

effect on conversion rates, but the best way to implement that manipulation will vary from

website to website. As such, by taking the absolute value, we abstract away from answering

the question of whether a particular intervention increases or decreases conversion rate, but

rather answer the question of how generic types of interventions affect conversion rates. In

this sense, instead of studying which interventions improve conversion rates, our analysis

answers a slightly different question: “Which types of interventions have the largest aver-

age impact on moving a website’s conversion rate (either positively or negatively)?” Note that

given the discussion around the shape of the distribution of effect sizes—in which experiments
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with large effect sizes are actually quite rare—identifying broad classes of interventions that

have larger effects is indeed a valuable exercise. As with any generalizable insights, firms will

need to experiment within a given class of interventions to identify which particular manip-

ulations result in positive effect sizes, but this analysis can at least guide this search process

toward the fatter tail of the effect size distribution.

4.3 Top-Level Models

We are now in a position to precisely define our primary regression model. We define

our dependent variable to be the log of the absolute effect size associated with an experiment:

yij = log |δ̂ij |; in this setup, index i represents the i-th experiment associated with firm j in our

sample. Our main research questions are about how intervention type and location varies with

effect size in e-commerce experiments. Before analyzing any interaction effects between these

factors, we first identify the main effects of these variables. We run two separate regressions

modeling experiment outcomes yij—the log absolute effect size of each experiment—on either

a Typeij variable or a Locationij variable that includes dummies for each of the experimental

categories identified in section 3. We also include a set of control variables, Controlsij :

yij = Typeijθ + Controlsijγ + εij (M1)

yij = Locationijθ + Controlsijγ + εij (M2)

The controls in this regression are included to address potential concerns about endogeneity

in our model. The largest likely source of endogeneity is unobserved heterogeneity across

firms. In particular, it is plausible that firms from different industries exhibit systematically

different testing strategies across experiment types. Even within an industry, it is possible

that—for unobservable reasons—some firms are simply more likely to make interventions

with large effect sizes. The extent to which this is also correlated with our main independent

variables—the types of tests firms choose to perform—will bias the estimates of our primary

parameters of interest. Thus, we include firm fixed effects variables in our set of controls.

Furthermore, it is likely that different types of experiments (say, promotions) are conducted

with varying frequency through the year. If observed effect sizes also systematically vary

throughout the year, this would be a source of omitted variables bias in our estimation. In-

deed, we know from conversations with the testing platform that both firms and consumers
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exhibit atypical behavior around certain time periods throughout the year (e.g., those near

Thanksgiving, Christmas). For this reason, we also include separate time-specific dummy

variables for each week of the year.

Imperfectly Observed Data. There is one challenge with how we have defined our

dependent variable that presents a non-trivial challenge for obtaining unbiased estimates of

the parameters in our model. In particular, we must consider the fact that our dependent

variable is necessarily observed with noise. Considering first the raw effect size that our

dependent variable is based on, recall that δ̂ij does not represent the true effect size associated

with an experiment, but rather an estimate of this value (we have used the “hat” notation to

distinguish this estimate from the true parameter, δij). This is, of course, why statistics are

necessary in A/B testing in the first place: to quantify the uncertainty around this estimated

effect size and determine if it is significantly different from zero. Standard practice in A/B

testing is to use the proportional means Z-test with pooled variance. In this test, a Z-score is

computed by first calculating the standard error of the mean:

ν̂ij =
√
p̂ij(1− p̂ij)(1/na

ij + 1/nb
ij), where p̂ij = (caij + cbij)/(n

a
ij + nb

ij)

This is then divided into the estimated mean, δ̂ij , and cross-referenced with the standard

normal CDF to obtain a p-value: Z = |δ̂ij/ν̂ij |; p = Φ(Z).

To minimize the influence of spurious results and the incidence of false positives, this p-

value is typically checked against a pre-determined significance level α (almost universally

0.05). Firms usually only consider experiments that reach this significance level to be of value.

We are in a similar position, in which we want to minimize the impact of spurious correlations

on our parameter estimates. As such, we may be tempted to exclude any experiments in our

dataset with p-values above a designated threshold, α. However, this also has significant

downsides that require us to discard the vast majority of our data. Another problem with this

approach is that, despite the prominence of the conventional α level of 0.05 throughout the

history of statistics, any value of α is essentially an arbitrary modeling choice (Gelman and

Stern, 2006).

However, there is an alternative: a common approach to address imperfectly observed

variables is to weigh the observations by the inverse of their variance. This causes outcomes
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that are observed more precisely to have higher weight in determining the model outcome.

Not only that, but this method—inverse variance weighted least squares, or WLS—is ac-

tually the best, linear, unbiased estimator of average partial effects in a regression model

(Hartung et al., 2011). In most empirical research projects, the effects of noise on dependent

variables are often difficult to deal with, since one rarely has estimates of both the observation

mean and its variance. Our dataset is unique in that we are able to calculate both the point

estimate, δ̂ij , and the standard error, ν̂ij , of our dependent variable.

Lastly, because we are ultimately working with the log-norm transform of δ̂ij , suitable care

must be taken to calculate the proper variance of the resulting yij variables. By the Central

Limit Theorem, the sampling distribution of δ̂ij will be asymptotically Gaussian, centered

around the true effect size with standard deviation ν̂ij . If we let uij = |δ̂ij | be defined as the

absolute value of the observed effect size in a given experiment, then the sampling distribu-

tion of uij will follow what is known as the folded normal distribution. Finally, by setting

yij = log uij , we can see that the exponential of yij will be a folded normal random variable.

Using these facts with the density function of a folded normal variable and the integral defi-

nition of variance, we can parameterize the variance of yij purely in terms of δ̂ij and ν̂ij using

the formula below. In this study, we evaluate this integral using Monte Carlo simulation.3

σ̂ij = Var[yij | δ̂ij = δ, ν̂ij = ν] = E
[
(yij − E[yij ])

2
]

=

∫
R
(y − E[yij ])

2py(y) dy

=

∫
R
y2py(y) dy − E[yij ]

2

=

∫
R
y2pu(e

y) dy − E[yij ]
2

=

∫ ∞

0
y2

[
1√
2πν2

e−
(ey−δ)2

2ν2 +
1√
2πν2

e−
(ey+δ)2

2ν2

]
dy − E[yij ]

2

Having obtained an estimate for the variance, σ̂2
ij , in our sample, we then define each

3Specifically, given that we have closed form estimates for δ̂ij and ν̂ij for each experiment, we first generate
100,000 draws (per experiment) from a normal distribution parameterized by these values. We then calculate the
empirical variance of the log-norm transform of the simulated values to obtain a reliable measure of the variance
associated with each observation in our sample.
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observation’s weight as its inverse variance: wij = 1/σ̂2
ij . We then estimate the parameters of

our model, β = (γ θ), using the weighted least squares estimator: β̂ =
(
XTWX

)−1
XTWy,

where X is the stacked matrix of data vectors xij = (Controlsij Typeij) and W is a diagonal

matrix of observation weights wij . This estimator minimizes the weighted squared error of the

model’s residuals, resulting in estimates of our regression coefficients that will be unbiased

(assuming conditional mean independence).

4.4 Main Effects Models

We now turn to the results of our regression analysis, summarized in Table 4. Columns

(1) and (2) correspond to the main effects models described earlier for experiment type and

location (respectively). In the first model, we have used the design category as the baseline

class. We see in column (1) that the coefficient on “Promotion” is positive and significant, with

a point estimate suggesting that the average promotional experiment in our dataset has an

effect size that is 100e1.26−1 ≈ 127% that of the average “Design” experiment (without control-

ling for intervention location). The coefficient on “Shipping” is negative, but not significantly

distinguishable from zero. Calculating the contrast between the “Promotion” and “Shipping”

coefficients (equivalent to changing the baseline class in our regression design) results in a

significant T statistic of 2.02 (p=0.04). The fact that there does appear to be a differential

effect between price and shipping promotions is consistent with the literature on price parti-

tioning.4

Turning to the location model in column (2), we have set the “Homepage” class as our

baseline experiment location. Without controlling for intervention type, the “Sitewide” exper-

iments (those manipulating elements that appear on every page of a website) appear signifi-

cantly smaller than the average “Homepage” experiment (β = −1.65, p < 0.001); experimental

effects in the “Category” funnel stage are significantly larger (β = 1.24, p < 0.01). Perhaps

surprisingly, the coefficient on the last funnel stage (“Purchase”) is not distinguishable from

that of “Homepage” experiments.
4However, note that we are not controlling for the level of discount across interventions; this means we are

not directly comparing the effect of a fixed amount of price change across listing and shipping prices, as would be
required for a proper analysis of price partitioning.
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Table 4: Statistical models

(1) (2) (3)

Intervention Type

Design (Baseline) — —

Promotion 1.26∗ 2.10∗

(0.64) (1.00)
Shipping −1.08 −1.03

(0.96) (0.72)

Intervention Location

Homepage (Baseline) — —

Sitewide −1.65∗∗∗ −0.06
(0.48) (0.48)

Category 1.24∗∗ 1.79∗∗∗

(0.40) (0.38)
Purchase 0.06 0.84

(0.52) (0.68)

Interaction Effects

Sitewide x Promotion −1.49
(1.12)

Sitewide x Shipping 1.38
(0.84)

Category x Promotion −6.20∗∗∗

(1.84)
Category x Shipping 0.29

(1.12)
Purchase x Promotion −2.30+

(1.25)
Purchase x Shipping 2.59∗∗

(0.99)

Firm Fixed Effects Yes Yes Yes
Time Fixed Effects Yes Yes Yes
Num. obs. 2203 1085 899
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, +p < 0.1. Dependent Variable: Log

of absolute effect size. Heteroskedasticity robust (White-Huber) standard
errors are reported in parentheses.
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4.5 Interaction Effects: Heterogeneity by Funnel Depth

Among our primary research questions is to investigate how various types of e-commerce

interventions may differentially affect purchase behavior throughout the online conversion

funnel. Having run two main effects regressions above—in which we looked at the effect

of experiment type and location separately—we will now specify an interaction model that

will allow us to determine if treatment effectiveness does depend on where an intervention is

targeted in the funnel. In particular, we include the two categorical variables from the prior

specifications (Typeij and Locationij), as well as the interaction between them.

yij = Typeijθ1 + Locationijθ2 +
(
Typeij × Locationij

)
θ3 + Controlsijγ + εij (3)

This model allows us to not only control for treatment heterogeneity in the identification of our

main effects coefficients, but the interaction coefficients will also give us the ability to detect

how different types of interventions vary in their effectiveness by funnel depth. The results

of this model (estimated with WLS and the same control variables as in prior specifications)

are shown in column (3) of Table 4.

Looking at the results, we first note that the main effects coefficients among the inter-

vention type variables are qualitatively similar to the main effects regression in column (1).

Comparing model (3) with the location regression in model (2), we see an attenuation of the co-

efficient on the “Sitewide” location; this suggests controlling for intervention type is an impor-

tant factor to consider when looking at how intervention location affects consumer purchasing

behavior. Turning to the interaction effects, we find that there does exist heterogeneity in the

effectiveness of various interventions across funnel depth. In particular, we find evidence

that “Promotion” interventions—those offering discounts or purchase incentives on product

list prices—become less effective at later stages in the funnel. The differential effect across

the funnel between “Promotion” and the baseline “Design” class appears to be strongest at

the “Category” phase, with the largest interaction coefficient being found between “Category

x Promotion” (β = −6.2, p < 0.001). A marginally significant effect is also seen at the “Pur-

chase” funnel stage as well (β = −2.30, p < 0.10). While our results do not suggest promotions

are ineffective at later stages of the online conversion funnel, they appear to be most effective

if advertised earlier in the customer’s journey through an e-commerce website. While this
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would need to be confirmed with further research, these results are consistent with the hy-

pothesis that promotions on a website do more to convince shoppers that they want to buy

something rather than affecting their decision about whether to buy a particular product they

are already considering.

Turning to the interaction coefficients on the “Shipping” category, we find a evidence for

a positive moderation between funnel depth and the effect size of shipping-related interven-

tions. While the interactions between “Shipping” and both “Sitewide” and “Category” funnel

locations are not statistically distinguishable from zero, there is a significant and positive

coefficient on the “Purchase x Shipping” interaction (β = 2.59, p < 0.01). This is perhaps not

surprising by itself, as it would make sense that customers are not as sensitive to logistical

costs like shipping if they have not yet decided to purchase anything. On the other hand,

rational consumers would be expected to consider total costs—including both list price and

shipping costs—when making a purchase decision at all phases of the consideration process.

We have known from the literature on price partitioning cited in 2.2 that consumers devi-

ate from rationality in the form of a first-order effect between list and shipping prices—i.e.,

that consumers react more strongly to a $1 change in shipping price more than an equiva-

lent change in listing price. However, our research suggests the existence of a second-order

effect of price-partitioning on consumer purchase behavior. When we consider the differen-

tial effects of funnel depth on both “Promotion” and “Shipping” interventions—that list price

promotions become less effective later in the funnel while shipping promotions become more

effective later in the funnel—our analysis suggests that both the type and location of market-

ing interventions are important factors for understanding consumers’ response to promotions.

In addition to providing novel insight into how online consumers deviate from rational con-

sumption behavior, this research is also of consequential practical significance to managers of

e-commerce firms, as it suggests how firms can maximize the impact of both their A/B tests

and unilateral marketing interventions by factoring both the type of intervention and where

it is advertised within a website’s architecture.
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5 Robustness Checks

5.1 Have our data been p-hacked?

As a meta-analysis, our findings will only be as valid as the data we put into the aggre-

gate model. Said differently, if the experiments in our sample were subject to some form of

data corruption, then any findings derived from inferential statistics about the levels and

uncertainty about effect size estimates may reasonably be called into question. Some recent

findings on other experimentation platforms have suggested that firms using A/B testing tools

engage in a practice of “continuous monitoring”, whereby they actively watch test statistics

as data arrive (Berman et al., 2018). This allows firms to choose when to stop an experiment

if results appear significant (early stopping), or gather additional data if results do not ap-

pear significant (extra data collection). These behaviors—a form of so-called p-hacking—are

known to inflate the empirical false discovery rate above the nominal α level (Simmons et al.,

2011). While our meta-analytic methods do not directly make use of p-values, there is an im-

plicit assumption about the validity of the effect size and uncertainty estimates being used to

form our dependent variable and weighting coefficients. Thus, an investigation into whether

this phenomenon can be detected in our dataset would provide some evidentiary value to the

hypotheses described earlier in this report.

5.1.1 How would we detect p-hacking?. In our context, the primary concern is that ex-

perimenters have manipulated the results of their experiments to achieve “statistical signif-

icance”. On the platform studied in this project, the interface was designed to prominently

highlight experiments with p-values less than 0.05. Specifically, for each experiment in the

interface, the platform displays a “confidence” value, calculated as 1−p, which is continuously

updated as new data arrive. Once this confidence value reaches 95%, the results from that

experiment are highlighted and are visually distinguished from results with confidence levels

below this threshold. If firms were indeed responding to this threshold effect, we would expect

there to be a disproportionate amount of experiments with confidence values just above the

95% threshold. Said differently, if we believe this p-hacking behavior is prominent in our sam-

ple, it leads to a prediction that there would be a discontinuity in the distribution of p-values

near the 0.05 significance threshold. We will investigate whether such a discontinuity exists

24



Figure 5: Distribution of p-values near 0.05 significance threshold

in our data.

5.1.2 Detecting a discontinuity in the density of p-values. A histogram of terminal p-values

in our experiment is shown in Figure 5, with a dotted line plotted at the 0.05 threshold.

While there is no visually-striking discontinuity near this threshold, this could be due to the

histogram bin-width in this particular plot. To provide formal statistical evidence about the

presence (or absence) of a discontinuity at the 0.05 threshold, we will apply the methods of

Cattaneo et al. (2018b). Note a simple regression discontinuity design is inappropriate for

testing discontinuities in density functions, since one must account for the sampling uncer-

tainty associated with any given point in the estimated density. The method developed by

Cattaneo et al. (2018b) accounts for this by first using low-order, local polynomial regression

estimates of the empirical cumulative distribution function, and then calculates estimates of

the density function as the derivative of this estimated CDF. Calculating the variance around

a point estimate of the density function then becomes equivalent to calculating the variance

of a slope coefficient, which is a long-standing and well-established practice in econometric

theory.

To derive a test statistic for our specific context, we specify a null hypothesis that assumes

continuity of the underlying density function f at the c = 0.05 threshold: H0 : f(c−) = f(c+).

Cattaneo et al. (2018b) provide an asymptotically Gaussian test statistic, T , that compares
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independent estimates of the density function on either side of the threshold value (i.e., one

estimate for data below 0.05 and a separate estimate for data above 0.05.5 As is common

in the RD literature for testing robustness to bandwidth selection (McCrary, 2008), we first

calculate an optimal bandwidth ĥ by minimizing asymptotic mean squared error (MSE), and

then provide test statistics of the discontinuity using the optimal bandwidth (ĥ), half the

optimal bandwidth (ĥ/2), and twice the optimal bandwidth (ĥ× 2).

We note that of the 2,782 experiments in our sample, there are 414 with terminal p-values

below 0.05 and 2,368 experiments with p-values above this threshold. We used the companion

software provided by Cattaneo et al. (2018a) to calculate our data’s test statistics. The MSE-

optimal bandwidth for our data is ĥ = 0.012. For each of the three bandwidth values described

above, we calculate a robust T -statistic, a 2-sided p-value (testing for any discontinuity at

the 0.05 threshold), and a 1-sided p-value (testing specifically for the expected form of the

discontinuity, that there are more experiments with p-values below 0.05 than above 0.05).

5.1.3 Results & Interpretation. Turning to the results of these tests in Table 5, we see only

null results for the test of a discontinuity using both the optimal bandwidth (first column) and

twice the optimal bandwidth (third column). When using half the optimal bandwidth (middle

column) there appears to be some evidence of a discontinuity, but in the opposite direction

of what we had expected. That is to say, the 2-sided test resulted in a p-value of 0.025, but

the 1-sided test—that specifically tests for whether there are more experiments with p-values

below 0.05—resulted in a p-value of 0.988.

We argue that the 2-sided p-value should be interpreted cautiously, as we are performing

6 hypothesis tests, any one of which could provide evidence for a discontinuity. Most weight

should be given to the tests based on the optimal bandwidth, which resulted in a 2-sided p-

value of 0.31. In totality, there appears to be vanishingly weak evidence that there are fewer

p-values below the 0.05 threshold than there are above this threshold. More importantly,

given the lack of any significant results testing for a preponderance of p-values below the 0.05

threshold, it is reasonable to conclude that there is no evidence of p-hacking in our sample
5This statistic is also a function of the order of the polynomials used in the underlying regressions, p, a kernel

bandwidth parameter h, and (implicitly) a kernel function K(·) that controls the smoothing of the data. We
implement this test using the recommended second-order polynomial fit (p = 2), a triangular kernel, and jackknife
estimator for variance estimation. Other choices of these parameters yield qualitatively similar results.
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Table 5: Tests for discontinuity in density of p-values at 0.05

Bandwidth ĥ ĥ/2 ĥ× 2
0.012 0.006 0.024

Robust T -statistic 1.015 2.243 1.480

2-sided p-value
Ha : f(c−) ̸= f(c+) 0.31 0.025∗ 0.139
P (|T | > t)

1-sided p-value
Ha : f(c−) > f(c+) 0.845 0.988 0.931
P (T < t)

of experiments. Though we cannot prove the null hypothesis, this robustness check suggests

that if any of the experiments in our sample were subject to p-hacking, the overall impact of

such data manipulation on our main results would be quite minimal.

5.2 Alternative Funnel Specification

The results from the primary regression model in Section 4—that models the interaction

between experiment type and funnel stage—provides suggestive evidence for two findings:

relative to non-marketing design interventions (a) promotional interventions are less effec-

tive at later stages in the e-commerce conversion funnel; and (b) shipping interventions are

more effective later in the conversion funnel. An important data requirement in this model

was that experiments needed to have metadata that allowed us to identify both indepen-

dent variables: the experiment type (design, promotion, shipping) and location on the website

(sitewide, homepage, category, purchase). This limited our analysis to experiments meeting

both these criteria, which left us with a selected, lower-powered sample to detect our effects

in. One may also be reasonably concerned with measurement error in how well our labeling

scheme accurately captured the location of a given experiment on a website (due to firms using

the same terminology differently or lack of specificity in the keywords we matched against).

In this section, we augment the prior analysis using an alternative operationalization of

each experiment’s funnel stage. Specifically, we will use what we call an experiment’s baseline

conversion rate as a proxy for how “deep” in the conversion funnel a given experiment is
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targeted. To motivate this concept, consider two experiments; one offering a promo code on

the website’s homepage and another offering a promo code when a user begins the checkout

process (say on the “cart” page of the website). Note that sessions are only counted in the

results of an experiment if the user was exposed to the manipulation. Thus, while essentially

all customers will see the homepage promotion, only customers that click through to the cart

page will see the cart promotion. A non-converting customer will be much less likely to see

the second experiment, whereas a converting customer would be counted in the results of both

hypothetical experiments. If we define the baseline conversion rate of a website element as

the conversion rate among the set of users exposed to that website element in their session,

it is obvious that the homepage experiment will have a lower baseline rate than the cart

experiment.

To capture this notion quantitatively, we will use the conversion among all sessions recorded

in a given experiment, (independent of which treatment each session was exposed to):

BCRi = BaselineConversionRatei =
cai + cbi
na
i + nb

i

While the quantity defined above is by no means the “correct” proxy to use, using any

other reasonable proxy yields nearly identical results to those we will report below. Other

proxies could be the minimum (or maximum) of the two conversion rates between treatment

conditions, the conversion rate of all A arms or all B arms, or a random choice between the

conversion rates of each condition—the results presented in this section do not depend on any

of these operationalizations.

The goal of defining this quantity is to be able to make comparisons about the funnel stage

of different experiments. We are making the case that an experiment with a baseline conver-

sion rate of 10% is “deeper” in the e-commerce conversion funnel than one with a conversion

rate of 1%. This seems reasonable since, almost by definition, a section of a website that

has a high conversion rate is affecting the behavior of users that are closer to completing a

purchase. Thus, we will interpret experiments with high baseline conversion rates as those

targeting later stages of the e-commerce conversion funnel (and vice versa).
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5.2.1 Modeling Treatment Heterogeneity. By using an experiment’s baseline conversion

rate as a proxy for its position in the checkout funnel, we can look for heterogeneity between

experiments that are targeted at different stages in the funnel. In this analysis, we will divide

experiments into “Early Funnel” and “Late Funnel” groups and look for heterogeneous effects

between funnel stages among the different experiment types identified earlier. In particular,

we choose a conversion rate τ ∈ (0, 1) as our binarization threshold; experiments with baseline

conversion rates above this threshold will be considered “Late Funnel”:

LateFunnelτi = I(BCRi > τ)

We can then run a similar regression as in Equation (3), except rather than interacting the

intervention types with a categorical location variable, we will use the binary LateFunnel

variable defined here:

yij = Controlsijγ + Typeijθ + LateFunnelτij +
(
Typeij × LateFunnelτij

)
βτ + εij (4)

Note the conversion rate threshold τ (at which we consider an experiment to go from being

“early” or “late” funnel) is entirely arbitrary. Rather than choosing any particular value of

τ , we will calculate the regression coefficients in Equation (4) for many levels of τ across the

support of the distribution of conversion rates in our dataset.

Because we are primarily interested in how intervention effectiveness varies through-

out the conversion funnel, we calculate the main interaction effects between LateFunnelτij

and Promotionij and Shippingij variables (design interventions are our baseline intervention

type). The top two panels in Figure 6 have both point estimates and (heteroskedastic ro-

bust) 95% confidence intervals for this coefficient (y-axis) plotted for different specifications

of the binarization threshold τ (x-axis). The bottom panel contains a histogram of baseline

conversion rates, which aids in visualizing how many experiments fall above or below a given

binarization threshold level. Finally, because we are not using keyword filtering to define our

funnel variable in this specification, the analyses below are conducted on the sample of 2,201

experiments in our dataset that have been coded for intervention type. As we turn to the re-

sults, recall that since design experiments serve as our baseline class, the interaction effects

reported here should be interpreted as how conversion rates among promotion and shipping
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experiments vary across the conversion funnel relative to design interventions.

Figure 6: Robustness Test for Alternative Funnel Specification

6

Looking at Figure 6, we see in the “Promotion × LateFunnel” panel that for experiments

very early in the conversion funnel (near the 0.001 baseline conversion rate), the coefficient

on this interaction may be positive, indicating that effect sizes are larger later in the funnel.

However, these results rely on a small number of experiments with very small conversion
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rates below the binarization threshold. Closer to the central mass of the conversion rate

distribution (near 0.08), the coefficients (both point estimates and confidence bands) on the

“Promotion × LateFunnel” variable are negative. At the tail end of the distribution (the last

three points on the right), the confidence intervals become much larger and the effects become

indistinguishable from zero. To summarize, the results of this analysis show mostly null or

negative effects, which is largely consistent with the results reported in Section 4.5, where we

found promotional experiments become less effective later in the conversion funnel.

Turning to the “Shipping × LateFunnel” panel in Figure 6, we see that the coefficients

on this variable are almost always positive and significantly different from zero. There are

some regions where the point estimates appear to be closer to zero, but—on the whole—this

analysis also appears to be consistent with our previous findings: that shipping interventions

are more effective later in the conversion funnel.

In sum, the results of this analysis—using a different operationalization of funnel depth

and a larger set of experiments—are largely consistent with the evidence presented in columns

3 of Table 4. Relative to design interventions, shipping interventions are typically more effec-

tive later in the conversion funnel. And across both specifications, we see evidence that pro-

motions are less effective at some later stages of the conversion funnel. That fact that these

findings are directionally consistent in both of our interaction analyses—using text-based

operationalization or conversion rate operationalization of funnel stage—provides stronger

evidence of our conclusions than either analysis alone.

6 Conclusion
The goals of this project have been to provide insight into the content of real-world e-

commerce experimentation. We have investigated the types of experiments firms run and

provided a robust analysis of how varying intervention types vary throughout different phase

of the e-commerce conversion funnel.

The results described in this project provide both meaningful managerial insight and con-

tribute to the broader literature on the marketing conversion funnel. We have shown that,

consistent with prior work, the distribution of effect sizes in digital experimentation is ex-

tremely skew. To help firms find those interventions with larger effect sizes, we then per-

formed a meta-analysis across the experiments in our sample. This revealed that the largest
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effect sizes (in absolute terms) for the average experiment in our sample are achieved by fo-

cusing on promotional and shipping-related interventions. Naturally, profit-maximizing firms

will need to weigh the costs of price and shipping discounts against the changes in conversion

rates associated with these interventions. Nonetheless, there are times when maximizing con-

version rates specifically can be of strategic value to firms; in these cases, this work provides

evidence-based guidance on the most effective ways for influencing customer conversions.

Furthermore, even without altering the types of interventions firms experiment with (i.e.,

by increasing or decreasing the number of promotions they test), our research provides ev-

idence on where firms can best target those interventions in their website architecture to

maximize their impact. This is because we were able to use two independent operationaliza-

tions to analyze the effectiveness of various promotional interventions throughout the typical

e-commerce conversion funnel. In particular, results of both our analyses suggest that price

promotions are best advertised early in the website conversion funnel, whereas shipping-

related interventions are best targeted towards customers that are in the later stages of the

buying process. Lastly, because we have arrived at these insights through an aggregate meta-

analysis of many different websites, we can make reasonable claims about the generalizability

of our findings among the population of e-commerce companies. We believe this research pro-

vides a unique insight to the factors that influence online shopping behavior in a quite general

way across the on-site conversion funnel.

These findings and the framework laid out in this project provide several promising av-

enues for future lines of both industrial and academic inquiry. For one, our results underscore

the importance of testing not just the right types of interventions in e-commerce experiments,

but also making sure those interventions are targeted at the right position in the marketing

funnel. Even in cases where our results are not immediately generalizable (e.g., for SaaS

or media companies), this framework provides a useful template to individual firms for opti-

mizing online conversions along multiple dimensions. Determining whether our findings do

generalize to these other industries would be a valuable direction for future research. Further-

more, our research can provide a starting point for targeted lab studies or field experiments

to provide more specificity about the interaction between intervention types and locations.

In addition to expanding the scope of our top-level findings, natural hypotheses to test in
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follow-up work are whether different sub-types of design interventions (e.g., generic banners

vs. pop-ups) and different magnitudes of promotions (e.g., 10% vs. 50%) affect consumers

heterogeneously across the conversion funnel.

Though there is room for future work in this area, this research represents an important

contribution to our understanding of the increasingly important practice of A/B testing. By

determining which types of experiments firms are running on their websites and quantify-

ing the relative effect sizes of these experiments, we have provided meaningful managerial

and theoretical insight into how firms use and can optimize their use of digital experiments.

Lastly, we reiterate how this project represents a shift in perspective among how researchers

can think about the topic of digital experimentation. Along with a small but growing body of

literature on this topic, we advocate that business researchers use modern A/B testing tech-

nologies to not only test their own hypotheses, but also to investigate how companies them-

selves use these technologies. We hope future research can build on this project to further our

understanding of the practice of digital experimentation in real-world business environments.
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