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Abstract
We investigate the potential of using technographic data—user characteristics re-

vealed in the metadata of standard web communication protocols—for the targeting of
promotional discounts to online shoppers. While researchers have historically empha-
sized the importance of purchase history and behavioral data for promotional targeting,
such data is typically unavailable about most visitors to online storefronts. Digital trace
data, on the other hand, has the potential to be used in targeted promotional campaigns,
even for individuals with whom a firm may have no prior relationship. The value of this
data, however, has yet to be empirically investigated in this context. To do so, we develop
a novel framework that identifies the optimal targeting policy for a flexible set of dis-
count campaigns. We demonstrate how to use machine learning methods and data from
an online experiment to estimate this policy and apply our techniques to data from two
promotional campaigns at separate online retailers. Using counterfactual policy eval-
uation, we find (1) our proposed methodology outperforms both a non-targeted baseline
and standard benchmark techniques in targeted marketing, and (2) that technographic
trace data can be used as an effective means of price discrimination in online retail. We
estimate the increases in profit possible using these methods to be on the order of 3%-
6%—equal to thousands of dollars of incremental value over the course of the studied
promotional campaigns. An explanatory analysis reveals that device-specific variables
such as screen size, operating system, and web browser (as opposed to geographic or
behavioral variables) prove most valuable for targeting purposes in this context. By
empirically quantifying the value of this data for price discrimination, this project adds
valuable insight to the growing discussion about the use of personalization technologies
for price-related interventions on the web, with implications for e-commerce managers,
consumer advocates, and policymakers.

Notes: An earlier draft of this paper was the winner of a “Best Short Paper in Track” award at the International Conference
on Information Systems 2020. We thank participants for their feedback at the 2020 Symposium on Statistical Challenges
in Electronic Commerce Research and the 2020 Conference on Information Systems & Technology. Research support for this
work is funded in part by grants from the Mack Institute and the Baker Retailing Center.



1 Introduction
The use of technology to deliver personalized customer experiences has been a key strat-

egy in retail management for decades (Peppers and Rogers, 1993). As shopping has increas-

ingly moved online, algorithmic product recommendation, service customization, and tar-

geted promotional messaging have all become staples of the retail experience (Ansari and

Mela, 2003, Dias et al., 2008). But in addition to the value information technology has for

improving customers’ shopping experiences, there is a growing appreciation of the power of

technology as a means of price discrimination (Wallheimer, 2018). As such, algorithmically-

enabled price discrimination, or “personalized pricing”, is an increasingly important topic

of study in legal, social, and economic disciplines. Our objective in this project is to study

the potential value of price discrimination in the e-commerce environment, with a particu-

lar focus on evaluating the prospect of using technographic trace data to target promotional

discounts to online shoppers.

Though there has been increased interest in the subject in recent years, price discrim-

ination of various sorts has been an essential practice throughout the history of retail.

Promotional discounts in particular have been used by firms for decades as a form of pas-

sive price discrimination, whereby consumers effectively self-segment by deciding to use

(or not use) a discount coupon. (Bawa and Shoemaker, 1987, Blattberg et al., 1995, Bolton,

1989, Narasimhan, 1984, Reibstein and Traver, 1982). But with the advent of customer

relationship management (CRM) techniques and software, it became possible to measure

and exploit heterogeneity in customer preferences (Drew et al., 2001, Shapiro and Varian,

1998). As a result, firms in many industries started to use CRM data to target their dis-

counts at the segment or individual customer level (Bawa and Shoemaker, 1989, Grewal

et al., 2011). Within this vein, several empirical studies have investigated the value of us-

ing CRM data as a means of price discrimination through the strategic targeting of price

discounts. (Johnson et al., 2013, Musalem et al., 2008, Rossi et al., 1996, Zhang and Kr-

ishnamurthi, 2004). A common finding within this body of work is the importance of using

purchase history data to segment consumers; among the studies that include other vari-

ables (e.g., customer demographics) within a targeting framework, the authors find these

features to be significantly less valuable than customer relationship data (Gupta and Chin-

tagunta, 1994, Khan et al., 2009).1

1The importance of behavioral history profiles for targeting has been demonstarted in other settings as well,
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While assuming the presence of purchase history data makes sense in many historical

contexts, the online retail environment presents a novel set of both opportunities and chal-

lenges for customer targeting. Though traditional, CRM-based methods of targeting are

still valuable for email and mobile application promotions (Dubé et al., 2017, Ghose et al.,

2019, Luo et al., 2014, Sahni, 2015), they are much less useful for targeting interventions of

active web browsers. E-commerce firms have the unique ability to deliver algorithmically

personalized experiences in real-time to anonymous website visitors for whom they may

have no relational history data.2 For any user merely browsing a firm’s online storefront—

even if they are not logged in or are otherwise anonymous to the firm—modern e-commerce

websites can exploit the presence of digital trace data provided by nearly all modern web

browsers to target that person with a discount offer or other form of promotional messaging.

In Table 1, we have listed various forms of technographic data generated by web browsers

and the information this data can reveal about an individual.

In some sense, the transition to online-shopping can seen as both a curse and a bless-

ing from the targeter’s perspective: on one hand, many (if not the vast majority of) online

shoppers will not be logged in when browsing an online storefront and, thus, traditional

mechanisms for promotional discount targeting will be irrelevant; on the other hand, the

presence of digital trace data provides a means of distinguishing users that visit a firm’s

website, whether or not they have any prior relationship with the firm. Prior work has

demonstrated the value of adaptive web personalization using digital trace data in non-

promotional contexts (Kobsa et al., 2001, Padmanabhan et al., 2001, Yi et al., 2009, Zhang,

2003), but existing literature contains no research about the value of this data for discount

targeting in online retail. And while there is descriptive research that has shown firms

engaging in technographic price discrimination (Hamermesh, 2013, Hannak et al., 2014),

there is a lack of empirical research on this subject in terms of methodological implemen-

tation and quantifiable economic value.

This project makes several contributions to the growing literature on personalized pric-

ing and targeted marketing. First, we derive the theoretically optimal targeting strategy

for campaigns involving promotional price discounts and describe a technique for using ma-
such as web and mobile advertising (Rafieian and Yoganarasimhan, 2020, Trusov et al., 2016).

2While it has been possible for brick-and-mortar firms to reach prospective customers through the purchase
of market intelligence and demographic data on households (Simester et al., 2020), these techniques can be
expensive and make little sense for digital-first e-commerce enterprises, for which their addressable market
has no geographic constraint.
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Table 1: Common trace data provided by modern web browsers

Data Source Inferrable information
TCP header

IP address Approximate location, internet service provider

HTTP header

User-Agent Operating system, operating system version, browser,
browser version, device type

Referer How the user arrived to the website; search query (if provided)

Cookie Whether or not the user has visited website before

Client-side tracking script
Built-in browser
JavaScript objects

Device features, e.g., screen size, color depth, language, timezone,
graphics hardware, plugins installed, fonts installed, canvas hash

chine learning to estimate this strategy from experimental data. Our model is specifically

designed to accommodate many different forms of price promotions that are common in on-

line retail, making it a flexible framework for estimating and measuring the returns from

optimal targeting policies in a variety of campaigns. As a novel theoretical contribution, we

find that in contrast to prior literature on targeted marketing in the absence of discounts,

the optimal discount targeting strategy depends on segmenting customers based on a cali-

brated trade-off between their individual baseline purchase rate and heterogeneity in their

response to the discount. Next, our methodology demonstrates how to use counterfactual

policy evaluation to assess the economic value of a targeted discount strategy using data

from a randomized experiment; thus firms can use this technique to accurately estimate

the profitability of a campaign prior to implementation. Lastly, we conclude by applying

our proposed approach to real-world data from A/B tests at two separate firms and find our

method results in significantly higher profits than both non-targeted strategies and exist-

ing benchmarks in targeted marketing. This research is the first to quantify the empirical

value of technographic data for discount targeting, finding that it can result in gains that

are competitive with those observed in prior research based on traditional CRM data.

2 Background & Related Literature
Given the growing interest and concern about the use of digital personalization technolo-

gies for price discrimination, it is useful to contextualize our project within these broader

topics. We briefly review the economic literature on price discrimination, and then review

more recent developments in public policy and consumer advocacy around the potential
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and practice of personalized pricing. In the subsequent section, we discuss how our work

relates to prior methodological research on targeted marketing.

2.1 Price discrimination, welfare, & digital privacy. The traditional lens through

which to evaluate the overall effect of price discrimination—in both academic and public

policy settings—has been to measure its impact on Marshallian welfare, based on utili-

tarian notions of producer and consumer surplus. Within this framework, economic mod-

els of monopoly markets have consistently found that price discrimination decreases con-

sumer surplus while increasing firm profits and total welfare. (Katz, 1987, Varian, 1989).

However, as various researchers have incorporated more complex dynamics into models of

personalized pricing—including the effects of competition (Choudhary et al., 2005), quality

differentiation (Ghose and Huang, 2009), price-comparison technologies (Chen and Sudhir,

2004), and strategic consumer disclosure of data (Ali et al., 2020, Chen et al., 2020)—the

implications for firm profits and consumer surplus are ambiguous, with various models

predicting increases and decreases in both quantities. Two empirical studies have specif-

ically investigated the welfare effects of personalized pricing on the internet, with both

supporting the monopoly theory of price discrmination, finding that total welfare increases

at the expense of consumer surplus (Dubé and Misra, 2019, Shiller, 2014).3

Of course, there are other lenses through which to view the practice of personalized

pricing besides its implications for utilitarian economic welfare. Various forms of price

discrimination remain controversial, as consumers generally view the practice of charging

different consumers different prices to be unfair, especially when such decisions are based

on personal characteristics (Englmaier et al., 2012, Huang et al., 2005, Kahneman et al.,

1986). Further, targeted price discrimination has the potential to result in unintended

racial or class discrimination (Ayres and Siegelman, 1995, Larson et al., 2015, Miller and

Hosanagar, 2019). There is also a growing concern among consumer advocates and pol-

icymakers around the use of big data and digital technologies for personalization more

generally (Alreck and Settle, 2007, O’Neil, 2016, The Council of Economic Advisers, 2015,
3Though information technology has increased the ability of firms to price discriminate, it is also relevant to

consider the ways consumers have benefited more generally from the transition to e-commerce. For example,
a macroeconomic analysis of the European market suggests that e-commerce has had substantial benefits for
household welfare (Cardona et al., 2015). The effects of shopbots have served to increase competition and keep
prices low (Tang et al., 2010); similar effects likely exist for coupon and deal aggregators. We highlight this to
note that even purely economic analysis of how novel technologies affect societal welfare can be a very complex
and nuanced exercise.
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Wagner and Eidenmuller, 2019).

As a result, there has been a vigorous policy debate in recent years with landmark

privacy-focused regulations being passed in several major markets—including the EU’s

General Data Protection Regulation (GDPR) and California’s Consumer Privacy Act (CCPA).

These polices have generally focused on regulating the use of “personal data” and cross-

session, cross-site cookie tracking. One consequence of these laws has been to force many

firms to delete CRM data gathered without affirmative consent, with some companies los-

ing up to 70% of their records (Hall, 2018). As such, the value of this data and traditional

CRM practices—which, as prior research has shown, have been critical for customer tar-

geting historically—face a future with increased compliance costs, regulatory scrutiny, and

market uncertainty.

At the same time, the extent to which technographic trace data falls under the purview

of these privacy laws is ambiguous. IP addresses and geolocation have been singled out by

some authorities as protected personal data (Meyer, 2018, Reid, 2017), but the collection

of other forms of trace data—such as a device’s operating system, browser version, and

referring domain—do not appear to be subject to the same strict regulations (unless these

data are tied to a user’s personal profile within a CRM). In any case, given that this data

can be anonymously logged and that it requires no historical user profiles or third-party

tracking software, it almost certainly faces lower regulatory barriers than many forms of

CRM and behavioral profiling data that have emerged in recent years.4

In light of these circumstances, research on the value of this form of first-party trace data

for targeted marketing and price discrimination may be of interest to several stakeholders,

including managers, consumer advocates, and policymakers. While we cannot definitively

address total welfare effects of personalized pricing generally, this project is able to pro-

vide some empirical insights that are relevant to the broader discussion on personalization

technologies and the value of technographic data for price discrimination. In particular,

we attempt to quantify the how profitable this data is for the purposes of offering targeted

discount offers to online shoppers.
4Attempts to use the unique combination of all a user’s technographic data for device fingerprinting—by

virtue of attempting to identify or link a user’s information across sources—is almost certainly prohibited
without affirmative consent under EU privacy laws (Laperdrix et al., 2020).
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2.2 Statistical methods for targeted marketing. While we focused much of the prior

discussion on the history of discount targeting and personalized pricing, this project is also

related to the literature on targeted marketing more generally and the use of machine

learning in marketing applications. Several innovations in statistics and economics have

highlighted the potential of machine learning for estimating individual-level, heteroge-

neous treatment effects using experimental data and high-dimensional covariate informa-

tion (Chernozhukov et al., 2018, Künzel et al., 2019, McFowland III et al., 2018, Taddy

et al., 2016, Wager and Athey, 2017). In marketing in particular, multiple recent papers

have demonstrated the value of these innovations for targeting purposes (Gutierrez and

Gérardy, 2017, Hitsch and Misra, 2018, Yoganarasimhan et al., 2020).

We also highlight the long history of research on using statistical techniques to develop

targeted outreach strategies for direct mail and customer retention campaigns (Cui et al.,

2006, Gensch, 1984, Kim et al., 2005). Research in these areas has emphasized the mer-

its of targeting customers least likely to take a desired action (e.g., customers who may

be at the lowest risk of contract renewal) (Ascarza and Hardie, 2013, Neslin et al., 2006)

or targeting all customers that will respond positively to a given marketing campaign—a

staple technique of so-called “uplift” modeling (Ascarza, 2018, Lo, 2002, Radcliffe, 2007).

An important insight, highlighted by the recent work of Lemmens and Gupta (2020) in the

context managing customer churn, is the value of directly using individual-level profitabil-

ity as a criterion for targeting. Another recent paper by Yang et al. (2020) proposes a novel

technique for targeting customers based on their long-term profitability outcomes.

Many of the interventions studied in the research cited in the previous paragraph do in-

volve promotional discounts, but none of these papers factor in the effects of discounting on

the immediate profitability of a promotional campaign. Prior work on targeted promotional

pricing has accounted for these effects, but these studies only offer empirical evidence for

the value of personalization in B2B settings (Dubé and Misra, 2019) or B2C settings in

which relational purchase data is available (Johnson et al., 2013, Rossi et al., 1996). In

this project, we are able to study the effects of personalized price discrimination in a novel

empirical context, and also to more closely relate the literature on targeted marketing for

pricing and non-pricing interventions. In particular, we demonstrate that, in the case of

discount interventions, the traditional marketing strategies described above—based on ei-

ther baseline response rates or heterogeneous response to intervention—are insufficient

6



for estimating the optimal targeting policy. Our model shows (and empirical findings con-

firm) that an optimal discount targeting strategy depends on a calibrated trade-off between

both of these quantities.

Further, as a practical matter, a key benefit of our model is that it can be used to tar-

get campaigns with various discount and cost structures. This is important for the modern

online retail environment, in which frequent and varied discount campaigns are a key com-

ponent of both consumer expectations and digital marketing strategy (RetailMeNot, 2018).

And given that consumers are known to exhibit heterogeneous response to different types

of discounts (Ahmad and Callow, 2018, Broeder and Derksen, 2018, Cao et al., 2018, Chen

et al., 2012, Shampanier et al., 2007), there is considerable value in the ability to use a

generic, parsimonious, and effective targeting framework in an ad hoc fashion across vari-

ous marketing campaigns.

The remainder of the paper is organized as follows: in Section 3 we describe a theoretical

model of discount targeting and derive the optimal policy; then, in Section 4 we describe a

framework for estimating this policy using a combination of experimental data and methods

from machine learning; Section 5 describes the results of an empirical investigation on the

value of our proposed approach. We conclude by discussing the implications of this work

for digital marketing managers and policymakers.

3 Decision-theoretic model for optimal discount targeting
3.1 Problem Set-up. We consider an e-commerce firm that observes a continuous stream

of users to their online storefront. When a user (indexed by 𝑖) arrives, the firm observes

𝑋𝑖 ∈ X, a vector of customer characteristics, and must decide on a treatment 𝑇𝑖 ∈ {0, 1}

to which the user will be assigned. Without loss of generality, we think of 𝑇𝑖 = 0 as the

control treatment in which no discounts are offered; in the treatment 𝑇𝑖 = 1, users are

offered a promotional discount.

We allow the exact nature of this discount to vary flexibly in our model. While this adds

some complexity, this feature is motivated by the fact that, in the real world, firms make

promotional offers of varying types — and the profit a firm earns takes a different form

depending on the discount type. ; we parameterize the structure of a campaign’s discount

by allowing it to take the form of either a percentage price discount in the amount of 𝑑×100%

for some 𝑑 ∈ [0, 1] (e.g., “20% off”), or a level discount amount in the amount of 𝑘 ≥ 0 dollars
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(e.g., “$20 off”). In the e-commerce setting, one can think of each treatment manipulation

as a banner at the top of the retailer’s website advertising the associated discount.

For each user, the firm observes the amount of revenue spent by the customer at the end

of their session, indicated by the variable 𝑅𝑖 ∈ [0, ∞). Note in this model the revenue vari-

able 𝑅𝑖 is equal to the nominal price of any goods purchased before discounts are considered.

We also define 𝐶𝑖 ∶= 1{𝑅𝑖 > 0} as a shorthand variable to indicate the binary outcome of

whether a user’s session ends with a purchase. Lastly, we assume the firm may have some

non-ignorable marginal cost 𝑐 for each purchase on their site. Using this notation, we can

express the firm’s profit for users in a the control condition (𝑇𝑖 = 0) as:

𝜋𝑖 = 𝑅𝑖 − 𝑐

For users in the treatment condition in which they are offered a discount (𝑇𝑖 = 1), the

firm’s observed profit will be given as:

𝜋𝑖 = (1 − 𝑑)𝑅𝑖 − (𝑐 + 𝑘)𝐶𝑖

Profits in this case are calculated as nominal revenue 𝑅𝑖 times (1 − 𝑑) when a percentage

discount is offered and, when a conversion is observed (i.e., 𝐶𝑖 = 1), marginal costs 𝑐 and

the level discount amount 𝑘 are deducted.5

Lastly, to simplify our notation in subsequent derivations, define the conditional response

functions of a given targeting campaign using the following notation:

𝜇𝑅
𝑡 (𝑥) ∶= E [𝑅𝑖 ∣ 𝑇𝑖 = 𝑡, 𝑋𝑖 = 𝑥]

𝜇𝐶
𝑡 (𝑥) ∶= E [𝐶𝑖 ∣ 𝑇𝑖 = 𝑡, 𝑋𝑖 = 𝑥] = Pr [𝐶𝑖 = 1 ∣ 𝑇𝑖 = 𝑡, 𝑋𝑖 = 𝑥]

These represent the conditional expected values of revenues (𝑅𝑖) and conversion rates (𝐶𝑖),

respectively, of a user with observed covariate 𝑋𝑖 = 𝑥 under treatment assignment 𝑇𝑖 = 𝑡.

Further, we define the conditional average treatment effect functions for both revenue and

conversion as:

𝜏𝑅(𝑥) ∶= E[𝑅𝑖 ∣ 𝑇𝑖 = 1, 𝑋𝑖 = 𝑥] − E[𝑅𝑖 ∣ 𝑇𝑖 = 0, 𝑋𝑖 = 𝑥] = 𝜇𝑅
1 (𝑥) − 𝜇𝑅

0 (𝑥)

𝜏𝐶(𝑥) ∶= E[𝐶𝑖 ∣ 𝑇𝑖 = 1, 𝑋𝑖 = 𝑥] − E[𝐶𝑖 ∣ 𝑇𝑖 = 0, 𝑋𝑖 = 𝑥] = 𝜇𝐶
1 (𝑥) − 𝜇𝐶

0 (𝑥)
5As a simple extension to the offline retail environment, we note that in cases where the firm may incur

outreach costs, such as in direct mail, the profit function can be modified to allow for an outreach-dependent
cost 𝑞, which will need to be accounted for in subsequent derviations: 𝜋𝑖 = 𝐶𝑖(𝑅𝑖(1 − 𝑑) − 𝑐 − 𝑘) − 𝑞. In this
case, the subsequent optimization problem may be constrained by a budget, requiring a linear programming
solution; e.g., see Imai and Strauss (2011). Because we focus specifically on digital targeting in this project,
we assume 𝑞 = 0 and therefore any budget considerations are ignorable.
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3.2 Optimal targeting policy. Given the setup above, we are now poised to investigate

the nature of the firm’s profit-maximizing targeting policy. The central problem we seek to

solve is whether or not the firm should assign a user (specified by some covariate value 𝑋𝑖)

to a discount treatment (𝑇𝑖 = 1) or a control treatment (𝑇𝑖 = 0).

To continue, we formalize the firm’s decision problem by introducing notation for the

firm’s decision function or policy 𝛿 ∶ X ⟶ {0, 1}, which maps the space of user-covariates

into the space of treatments. That is, for an arbitrary user 𝑖, 𝛿 is the policy the firm uses to

assign treatment so that 𝑇𝑖 = 𝛿 (𝑋𝑖).6 We will consider decision functions of a particular

form, denoted by 𝛿𝑓 , that depend on a thresholding function 𝑓 for assigning treatments:

𝛿𝑓 (𝑥) =
⎧{{
⎨{{⎩

1 if 𝑓 (𝑥) > 0

0 if 𝑓 (𝑥) ≤ 0
We will refer to 𝑓 as the firm’s targeting function.

In this notation, the problem of finding the profit-maximizing targeting policy can be

expressed in the following form:

max
𝑓

Π (𝑓 ) = E[𝜋𝑖 ∣ 𝑇𝑖 = 𝛿𝑓 (𝑋𝑖)] (1)

In the following proposition, we derive the exact form of the optimal targeting function in

terms of the various quantities described above.

Proposition 1. Given the discount and cost parameters (𝑑, 𝑘, 𝑐) associated with a target-

ing campaign, the firm’s optimal score function, i.e, the argument of the maximum of the

optimization problem in (1), is given by:

𝑓 ∗(𝑥) = 𝜏𝑅(𝑥) − 𝑐𝜏𝐶(𝑥) − [𝑑𝜇𝑅
1 (𝑥) + 𝑘𝜇𝐶

1 (𝑥)] (2)

= (1 − 𝑑)𝜏𝑅(𝑥) − (𝑐 + 𝑘)𝜏𝐶(𝑥) − [𝑑𝜇𝑅
0 (𝑥) + 𝑘𝜇𝐶

0 (𝑥)] (3)

Proof. By definition, 𝑇∗
𝑖 = 1 if and only if E[𝜋𝑖 ∣ 𝑇 = 1, 𝑋 = 𝑥] > E[𝜋𝑖 ∣ 𝑇 = 0, 𝑋 = 𝑥].

Substituting in the definitions of conditional response and condtional average treatment
6To clarify notation, we use 𝑇𝑖 to indicate the treatment a user is assigned in the abstract, random variable

sense and use 𝛿 (𝑋𝑖) to indicate the treatment chosen for a user by a given decision rule 𝛿.
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effect functions, we have:

E[𝜋 ∣ 𝑇 = 1, 𝑋 = 𝑥] > E[𝜋 ∣ 𝑇 = 0, 𝑋 = 𝑥]

E[𝑅(1 − 𝑑) − 𝑐𝐶 − 𝑘𝐶) ∣ 𝑇 = 1, 𝑋 = 𝑥] > E[𝑅 − 𝑐𝐶 ∣ 𝑇 = 0, 𝑋 = 𝑥])

𝜇𝑅
1 (𝑥)(1 − 𝑑) − 𝑐𝜇𝐶

1 (𝑥) − 𝑘𝜇𝐶
1 (𝑥) > 𝜇𝑅

0 (𝑥) − 𝑐𝜇𝐶
0 (𝑥)

𝜇𝑅
1 (𝑥) − 𝜇𝑅

0 (𝑥) − 𝑐(𝜇𝐶
1 (𝑥) − 𝜇𝐶

0 (𝑥)) > 𝑑𝜇𝑅
1 (𝑥) + 𝑘𝜇𝐶

1 (𝑥)

𝜏𝑅(𝑥) − 𝑐𝜏𝐶(𝑥) > 𝑑𝜇𝑅
1 (𝑥) + 𝑘𝜇𝐶

1 (𝑥)

𝜏𝑅(𝑥) − 𝑐𝜏𝐶(𝑥) > 𝑑(𝜇𝑅
0 (𝑥) + 𝜏𝑅(𝑥)) + 𝑘(𝜇𝐶

0 (𝑥) + 𝜏𝐶(𝑥))

(1 − 𝑑)𝜏𝑅(𝑥) − (𝑐 + 𝑘)𝜏𝐶(𝑥) > 𝑑𝜇𝑅
0 (𝑥) + 𝑘𝜇𝐶

0 (𝑥)

If we let

𝑓 ∗(𝑥) = (1 − 𝑑)𝜏𝑅(𝑥) − (𝑐 + 𝑘)𝜏𝐶(𝑥) − [𝑑𝜇𝑅
0 (𝑥) + 𝑘𝜇𝐶

0 (𝑥)]

then 𝑓 ∗(𝑥) > 0 if and only if E[𝜋 ∣ 𝑇 = 1, 𝑋 = 𝑥] > E[𝜋 ∣ 𝑇 = 0, 𝑋 = 𝑥].

■

3.3 Comments on optimal policy. Before continuing, we make several remarks about

the result from Proposition 1. First, as we will demonstrate in the following section, the

decision criteria in Eq. (2) can be readily evaluated by using experimental data to estimate

the response and treatment effect functions; Eq. (3) is a completely equivalent expression

of this criteria. Note that the left side of Eq. (2) can be described as the expected gain in

profit by offering a discount and the right side (in brackets) represents the costs of offering

a discount to a user. To see this, note that 𝜇𝑅
1 (𝑥) represents the total revenue the firm

expects from a user by targeting them with a discount; in the case of a percentage discount,

𝑑𝜇𝑅
1 (𝑥) represents the money the firm loses as a direct consequence of the discount on the

user’s total spend; in the case of a level discount, 𝑘𝜇𝐶
1 (𝑥) is the relevant quantity. But

𝜏𝑅(𝑥)−𝑐𝜏𝐶(𝑥) represents the incremental gain in revenue the firm can expect by targeting

that user with a discount treatment. If this gain exceeds the costs, it is profitable to offer

that user a discount promotion.

Next, to relate this targeting strategy to prior work on targeted marketing in non-discount

settings, we focus on the form of the optimal targeting function in Eq. (3), and consider the

simplest discount structure where a firm offers a percentage discount with no marginal

costs. In this scenario, the optimal targeting criteria can be written as (1 − 𝑑)𝜏𝑅(𝑥) >

𝑑𝜇𝑅
0 (𝑥). Expressed in this form, it is apparent that the optimal targeting condition—even
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in the simplest of cases—requires individual-level estimates of both treatment heterogene-

ity and baseline response rates. We highlight this as a contrast to existing research on

targeted marketing in the context of retention and direct mail campaigns, which has tra-

ditionally focused on only one of these quantities (Ascarza and Hardie, 2013, Neslin et al.,

2006, Radcliffe, 2007). Ascarza (2018) does compare targeting campaigns based on both

quantities, but concludes for the purposes of their research context that it is more benefi-

cial to focus on treatment effects than baseline responses as a targeting criteria. However,

when a marketing campaign offers a promotional price incentive, and a firm is interested

in maximizing the short-run profits of the campaign in question, the theoretically optimal

targeting policy depends on a calibrated trade-off between both baseline response rates

and responses to treatment, in a way that depends on the exact parameters of the firm’s

campaign.

Lastly, we reiterate that the policy we derive in Proposition 1 is designed to accommo-

date multiple different discount campaign scenarios. It is very unlikely that all exogenous

parameters in the model will be non-zero in a real-world application, but our generic frame-

work allows us to derive the form of the optimal policy across a variety of campaigns. To

highlight how this framework can be used in realistic scenarios, Table 2 compiles a list

of cost structures common in several marketing campaigns and applies Proposition 1 to

derive the mathematical form of the optimal policy.

Table 2: Realistic discount campaigns with corresponding optimal targeting policies

Description Relevant cost
parameters

Optimal
targeting function

Percentage discount 𝑑 (1 − 𝑑)𝜏𝑌(𝑥) − 𝑑𝜇𝑌
0 (𝑥)

Free flat-rate shipping or
dollar-off discount 𝑘 𝜏𝑌(𝑥) − 𝑘𝜏𝐶(𝑥) − 𝑘𝜇𝐶

0 (𝑥)

Percentage discount and
free shipping 𝑑, 𝑘 (1 − 𝑑)𝜏𝑌(𝑥) − 𝑘𝜏𝐶(𝑥) − 𝑑𝜇𝑌

0 (𝑥) − 𝑘𝜇𝐶
0 (𝑥)

Percentage discount with
universal free shipping 𝑑, 𝑐 (1 − 𝑑)𝜏𝑌(𝑥) − 𝑐𝜏𝐶(𝑥) − 𝑑𝜇𝑌

0 (𝑥)

4 Experimentation & estimation framework
While we have established the relevant theoretical foundations for the optimal targeting

of discounts in the online retail environment, we have yet to describe how firms can imple-
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ment this strategy in a feasible way. In this section, we outline a framework that allows for

efficient estimation of optimal discount targeting strategies using data from randomized

experiments. We elaborate on some of the practical details of this methodology below, but

here we lay out our targeting framework at a high level. It consists of three primary phases:

1. Experimentation: The firm will choose discount structure (𝑑, 𝑘) and run an A/B test in

which a randomized subset of users are assigned to the discount treatment condition.

In the process, they will gather data on targetable customer features 𝑋𝑖, individual

revenue and conversion responses, 𝑅𝑖 and 𝐶𝑖, and treatment assignments 𝑇𝑖.

2. Estimation: Using the realized experimental data D = {𝑟𝑖, 𝑐𝑖, 𝑥𝑖, 𝑡𝑖} gathered in the

first phase, the firm can use machine learning techniques to estimate the conditional

response and treatment effect functions (𝜇̂𝑅
0 , 𝜇̂𝐶

0 , ̂𝜏𝑅 and ̂𝜏𝐶); estimation of these func-

tions is discussed in detail below. Factoring in their relevant revenue and cost pa-

rameters, the firm can use these functions to estimate a targeting policy based on the

optimal criteria derived in Eq. 2.

3. Targeting: For customers that arrive to their website moving forward, the firm ob-

serves their covariate 𝑥, evaluates the targeting criterion using the estimated quanti-

ties, (1 − 𝑑) ̂𝜏𝑅(𝑥) − (𝑐 + 𝑘) ̂𝜏𝐶(𝑥) − [𝑑𝜇̂𝑅
0 (𝑥) + 𝑘𝜇̂𝐶

0 (𝑥)] > 0, and offers a discount if the

criterion is met.

4.1 Estimation of customer-level responses and treatment effects. For our the-

oretical model to be useful in practice, it must be the case that we are able to estimate

conditional response and treatment effect functions with sufficiently high-fidelity at the

individual customer level. At a conceptual level, the accuracy of our predictions will de-

pend on two main factors: our prediction algorithm and the data provided to it. We focus

on explaining our algorithm and estimation technique in this section and use Section 5 to

study whether our approach is profitable with the technographic data commonly available

in e-commerce environments.

Conditional response function estimation. We first describe our process for estimating the

conditional response functions 𝜇𝑅
𝑡 (𝑥) and 𝜇𝐶

𝑡 (𝑥). Recall these functions are supposed to

map a set of observable customer characteristics 𝑥 to their expected response, conditional

on treatment assignment. A key challenge in deriving an accurate estimate of expected

revenues for each individual customer is an abundance of zero-revenue observations in
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most e-commerce environments. For example, if we assume that a firm has an overall

conversion rate of 3%, then 97% of the observations in any dataset will have a revenue

value of zero. To deal with this challenge, we implement a two-stage hurdle model for

predicting customer revenue levels (Tu and Liu, 2014). Such models are inspired by the

following identity, by which a positive count variable (such as revenue) can be decomposed

into the product of two distinct quantities:

E[𝑅𝑖 ∣ 𝑥𝑖] = Pr[𝑅𝑖 > 0 ∣ 𝑥𝑖]E[𝑅𝑖 ∣ 𝑅𝑖 > 0, 𝑥𝑖]

The first quantity, Pr[𝑅𝑖 > 0 ∣ 𝑥𝑖], is the probability that a customer buys anything in a

session; the second, E[𝑅𝑖 ∣ 𝑅𝑖 > 0, 𝑥𝑖], is the expected revenue observed, conditional on

a conversion occurring. In our proposed technique, we estimate both of these quantities

by first fitting a probabilistic classifier to predict whether or not a customer will convert;

note this quantity is precisely the conditional response function for conversion 𝜇𝐶
𝑡 . Then,

a second continuous-valued predictor is fit to estimate revenues, but only on the subset

of users that made a purchase. Once these models are fit, we obtain an unconditional

estimate of expected revenue (𝜇𝑅
𝑡 ) by merely multiplying the predictions of the two sub-

models described above.7

While we only need estimates of conditional response functions under control (𝜇𝑅
0 , 𝜇𝐶

0 ) to

evaluate the targeting criterion in Eq. (3), we will also need to estimate response functions

under treatment (𝜇𝑅
1 , 𝜇𝐶

1 ) in subsequent calculations of heterogeneous treatment effects.

As such, we estimate the conditional response functions for both control and treatment

groups by training the aforementioned hurdle model separately on each subset of treat-

ment and control data; this process is described in the pseudocode for “EstimateRespon-

seFunctions” provided in Algorithm 1. In summary, by performing this approach to both

control and treatment conditions, we are able to derive estimated predictors of conversions

and revenues for both groups; we use hat notation to refer to these estimated quantities as

𝜇̂𝐶
0 , 𝜇̂𝑅

0 , 𝜇̂𝐶
1 , and 𝜇̂𝑅

1 .

As for the choice of learning algorithms used for the classification and regression tasks,

our technique uses gradient-boosted decision trees (GBDT).8 Gradient boosting models are
7By training our conversion model and revenue-conditional-on-conversion models separately, our technique

treats these as independent quantities. While this approach would be problematic if our goal was inference
on a set of regression parameters (Heckman, 1979), this is not our objective in this project. Rather we wish to
maximize the predictive accuracy of our targeting algorithms; the evidence of whether or not this assumption of
independence is appropriate is an empirical question and can be assessed by observing our model’s performance
in Section 5.

8While simpler methods, such as penalized logistic and linear regression, are also natural candidates to use,
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frequently the best-performing algorithm in popular machine learning competitions and

have shown strong performance in a large variety of contexts that rely on tabular data

(Martinez and Gray, 2019, Nielsen, 2016). In addition to exhibiting high levels of accuracy

in many different environments, GBDT models can be easily adapted for both classification

and regression tasks by choosing suitable loss functions. As such, we are able to minimize

the complexity of our estimation procedure by using similar optimization techniques and

vocabulary across classification and regression tasks.

Conditional average treatment effect estimation. Estimating conditional average treat-

ment effects (CATE) at the individual level is a notoriously difficult problem but one that

has been facilitated in recent years by several advances in machine learning and causal in-

ference. Many new techniques in this space have focused specifically on the problem of in-

ference around CATE, which is often achieved using some form of repeated sample-splitting

(Chernozhukov et al., 2018, Wager and Athey, 2017). In our case, because inference is not

as important as prediction performance, we opt for a simpler technique that is commonly

referred to as the “T-learner” for heterogeneous treatment effects. Because we assume

treatment assignments will have been exogenously randomized in our experimental data,

we can recover asymptotically unbiased estimates of individual-level treatment effects by

merely predicting a user’s response for both treatment and control conditions and taking

the difference (Künzel et al., 2019).9 In concrete terms, for the case of predicting treatment

effects on customer conversion, given the estimates of 𝜇̂𝐶
0 and 𝜇̂𝐶

1 described above, we cal-

culate the expected treatment effect for a user with covariate 𝑥 as ̂𝜏𝐶(𝑥) ∶= 𝜇̂𝐶
1 (𝑥) − 𝜇̂𝐶

0 (𝑥).

Estimating treatment effects on revenue is done similarly: ̂𝜏𝑅(𝑥) ∶= 𝜇̂𝑅
1 (𝑥) − 𝜇̂𝑅

0 (𝑥). Pseu-

docode for this process is given in the “EstimateCATE” function in Algorithm 1. Once the

response and treatment effect functions have been estimated, we can now evaluate the de-

cision criteria in Eq. (3) to determine whether a new user that arrives at the website should

be offered a targeted discount. Building on the estimation processes introduced above, the

“EstimateTargetingFunction” code provided in Algorithm 1 describes how the optimal tar-
they consistently demonstrated worse performance in our empirical findings. Further, with modern machine
learning software, there is little penalty for using more complex models, so long as they are appropriately
tuned. In our project, we use the LightGBM library as the core of our gradient boosting techniques (Ke et al.,
2017).

9We have implemented versions of our framework using both the methods of Wager and Athey (2017) and
Chernozhukov et al. (2018); even with considerable tuning, both were found to perform consistently worse than
the T-learning procedure described here. This is because the sample-splitting procedures at the heart of these
techniques reduce our effective sample size.
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geting function for an arbitrary discount campaign can be derived from raw experimental

data.

Hyperparameter optimization. All machine learning algorithms have a number of hy-

perparameters that must be exogenously specified prior to training that significantly affect

model performance. In the case of gradient boosting, important hyperparameters include

the number of boosting rounds, the learning rate, and decision tree termination criteria.

(See Table 3 for the full list of parameters we use in our procedure and the range of val-

ues in our search space.) For standard supervised learning, such parameters are often set

by analysts using cross-validation to estimate prediction accuracy (e.g., ROC AUC in the

case of classification; squared loss or log-likelihood in the case of regression). While such

techniques are suitable for straightforward prediction tasks, they break down in the case

of heterogeneous treatment effect estimation. This is because, in most experimental data,

a single individual is only exposed to one treatment condition. This makes it is impossible

to observe the “true” value of their counterfactual response to treatment, precluding the

possibility of minimizing a loss function between predicted and observed data. While sev-

eral methods exist for getting around this limitation, all techniques in existing literature

are focused singularly on maximizing the accuracy of treatment effect estimators (Nie and

Wager, 2017, Rolling and Yang, 2014, Schuler et al., 2018).

However, our ultimate economic objective in this project is not to minimize the statis-

tical error of our treatment effect estimators but to maximize firm profits by estimating

a targeting policy. We determined earlier that the theoretically optimal targeting policy

depends on estimating both response functions and treatment effect functions. As such,

there is no guarantee that selecting the best model for either task individually will result

in the most profitable outcomes for the task as a whole. In light of these challenges, we

employ a tailor-made hyperparameter optimization technique that is designed to maximize

expected profits directly. This approach is adaptive to campaigns with varying cost and dis-

count structures and, as such, can be used as an off-the-shelf model selection technique in

many different scenarios.

To motivate our technique, note the task of estimating the expected profits from a given

targeting policy maps directly on to the problem of off-policy evaluation in the literature

on reinforcement learning (Sutton and Barto, 2018). If a user was assigned one condi-

tion in our experimental data and a targeting policy would have assigned them to the op-
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posite condition, we cannot observe their counterfactual response and thus must impute

this value in a reliable way to estimate the profitability of the proposed policy. However,

there are multiple methods for inferring the value of a counterfactual policy from offline

records. One approach, known as the direct method relies on simply imputing the value of

a counterfactual policy on the whole sample by using the subset of observations for which

the proposed intervention matches the intervention assigned in the offline data (Li et al.,

2012). Another solution is inverse probability weighting (IPW), which is known to provide

an unbiased estimation of off-policy rewards (Horvitz and Thompson, 1952). While both

techniques have been used in the literature on targeted marketing (Lemmens and Gupta,

2020, Yoganarasimhan et al., 2020), they are known to offer poor performance when the

counterfactual policy differs substantially from the policy used for data collection.

An innovation to improve on these methods is doubly robust (DR) off-policy evaluation,

which requires either that we have a good model of the relationship between covariates

and outcomes or a good model of the data collection policy (Dudík et al., 2014). In our

case, where we are using data from random experiments—for which we know exactly the

data collection policy—we do not expect the results of these methods to differ significantly,

though the DR method can still offer efficiency gains since it has been shown to exhibit both

lower bias and lower variance than the direct or IPW methods (Jiang and Li, 2016). Note

that the DR approach we employ here has also been recently applied successfully in the

domain of targeted marketing by Yang et al. (2020).10

Before we can express the formula for the DR estimator, we define a predictive model

of how firm profits depend on both treatment assignment and user covariates; let 𝑉(𝑡, 𝑥)

represent such a model. This can be estimated using standard supervised learning tech-

niques from our experimental data by adding the observed treatment assignment 𝑡𝑖 as a

predictor to the observed features 𝑥𝑖 and using this data to predict the observed profit 𝜋𝑖

in each user’s session. Adapting the technique of Dudík et al. (2014) to our context, the DR

estimator takes the form:

𝜋̂𝐷𝑅
𝑓 = 1

𝑁
𝑁

∑
𝑖=1

⎛⎜⎜
⎝

𝑉 (𝛿𝑓 (𝑥𝑖); 𝑥𝑖) + ∑
𝑡=0,1

1 {𝛿𝑓 (𝑥𝑖) = 𝑡}
Pr[𝑡𝑖 = 𝑡] (𝜋𝑖 − 𝑉(𝑡𝑖; 𝑥𝑖))⎞⎟⎟

⎠
With the ability to estimate out-of-sample profits for counterfactual targeting policies

10Also note that this technique requires significantly fewer assumptions than model-based, simulation ap-
proaches that have been used in past literature, which assume their parametric models accurately capture
customer behavior (Khan et al., 2009). So long as we know the treatment assignment policy that was used for
the observations in our dataset, these techniques are able to provide an unbiased counterfactual assessment
of any proposed targeting policy.
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using the formula above, we can maximize this quantity as our objective function within

a cross-validation framework for parameter tuning. We use an adaptive grid search over

the space of hyperparameters and select the combination of parameters that maximizes

cross-validated expected profits (Bergstra et al., 2013); refer to Table 3 for details on our

parameter search space. Pseudocode for this entire procedure is described in the appendix

in Algorithm 2.

Table 3: Hyperparameters used in gradient boosting decision tree models

Parameter name Distribution used in search space Quantization interval
Number of boosting rounds LogUniform(50, 500) 25
Learning rate LogUniform(0.01, 0.2)
Maximum number of leaves Uniform(30, 150) 10
Minimum samples in leaf Uniform(20, 500) 20
L1 regularization Uniform(0, 1)
L2 regularization Uniform(0, 1)

Note: The two numbers in each distribution represent the lower and upper limits of the search space used. The presence of
a quantization interval indicates the distribution was only sampled at numbers divisible by the interval. The same

hyperparameter space is used for both classification and regression tasks.

5 Empirical applications with A/B test data
Up to this point, we have derived the theoretically optimal personalized discount pol-

icy and described how a firm might use this result, in combination with experimental

data, to optimize a marketing campaign of targeted discounts. However, we have yet to

show that our findings have value in real-world settings where there are many reasons

our theoretically-optimal strategy might fail. For example, the common sample sizes used

in A/B tests and the limited number of features that are observable within technographic

trace data can make it difficult to estimate the individual-level response and treatment

effect functions required for optimal targeting. If the estimates of ̂𝜇0(𝑥) and ̂𝜏(𝑥) are too

noisy, it may be more profitable to fall back on simpler targeting rules that don’t require

such fine-grained distinction between customers on multiple dimensions. As such, it is im-

portant to study our proposed strategy in an empirical setting with practical limitations

common in real-world e-commerce environments. We use the remainder of this paper to

address this topic.

5.1 Empirical context and dataset. To empirically evaluate our method, we use ex-

perimental data from two separate US-based e-commerce firms. The data from Experiment

1 comes from a retailer of women’s beauty products; the data from Experiment 2 comes from
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a novelty apparel company. Summary data from each dataset are provided in Table 4. In

each experiment, a discount treatment was randomly assigned to a subset of the website’s

visitors; for such users, a discount was advertised on the homepage and with a persistent

banner across the header of each firm’s website. The nature of the discount differed be-

tween firms, allowing us to study whether our generalized discounting framework adds

value under different discount and cost structures.

Table 4: Summary characteristics for experimental data

Variable Experiment 1 Experiment 2
Number of sessions 87,675 59,353
Conversion rate 1.4% 4.9%
Average revenue per user $0.79 $2.15
Average revenue per conversion $54.09 $44.82
Proportion randomized to treatment 50% 90%
Average effect size on conversion +0.08% +1.0%
Time period Q1 2014 Q1 2015
Length of experiment 17 days 96 days

For each user in both experiments, we observe their conversion responses, treatment as-

signments, and a set of technographic characteristics that are commonly accessible to most

web servers. As our data has been provided by a collaborating experimentation platform,

we did not have explicit control over the variables collected in the experimentation process.

As such, we do not have access to all the variables shown in Table 1, but rather a subset that

includes many of the most common attributes regularly collected by standard web analytics

software. This includes a user’s operating system, web browser, screen dimensions, refer-

ral source, and—when the user arrived through a search engine that appends this data to

the referring URL—search query information. The firm also observed each user’s IP ad-

dress which they map to a user’s approximate GPS coordinates using a geolocation service;

we also use this data to match each user to a Nielsen designated market area (DMA). The

only variables in our dataset that require a client-side tracking script to collect are those

related to screen size; all others can be directly inferred from standard metadata provided

by internet communication protocols. In principle, a marketer with direct access to web log

data would be able to observe the raw trace data with slightly higher fidelity, meaning our

analysis should be considered as a lower bound on the informational content contained in

these features.11

11For example, our data does not include the raw User-Agent header for each user’s session; this can be used
to extract information about exact version of operation system and web browser being used by the client.
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We provide summary statistics of the features available in our dataset in Table 5. For nu-

meric variables, we report the sample mean 𝜇 and standard deviation 𝜎. For categorical

variables, we instead report the number of categories 𝐾 . We also report the Gini coeffi-

cient, 𝐺, based on the count data for observations across categories within a given vari-

able. Though historically used for evaluating inequality in macro-economic data, the Gini

index is a useful summary statistic for characterizing how skew the distribution of counts

is within a categorical variable. In this case, a higher Gini coefficient corresponds to a

categorical distribution that has more of its observations clumped within a small number

categories; lower Gini coefficients indicate there is a more equal spread of observations

across categories.

As can be seen in Table 5, many of these features are categorical; even after removing

categories with only one observation, our raw data matrix is very high-dimensional. Given

the success of single value decomposition (SVD) as a dimensionality-reduction technique in

other supervised learning tasks with high-dimensional data, we employ SVD to preprocess

our covariate matrix in this application (Sarwar et al., 2000, Wall et al., 2003). In partic-

ular, we approximate the categorical features in our data with a truncated SVD of rank

10 (Hansen, 1987). In both experiments, this process reduces the dimension of our data

matrices to 15 features.

Table 5: Variables available in dataset for promotional targeting

Variable Type Experiment 1 Experiment 2
Device

Operating system Categorical 𝐾 = 22 𝐺 = 0.81 𝐾 = 18 𝐺 = 0.78
Browser Categorical 𝐾 = 12 𝐺 = 0.72 𝐾 = 15 𝐺 = 0.75
Screen height Numeric 𝜇 = 1277.2 𝜎 = 346.9 𝜇 = 791.4 𝜎 = 234.2
Screen width Numeric 𝜇 = 889.7 𝜎 = 144.6 𝜇 = 871.7 𝜎 = 553.7

Behavioral
HTTP referrer Categorical 𝐾 = 817 𝐺 = 0.97 𝐾 = 327 𝐺 = 0.98
Search term Categorical 𝐾 = 3,189 𝐺 = 0.96 𝐾 = 2, 883 𝐺 = 0.95
Existing cookie Binary 𝜇 = 0.32 — 𝜇 = 0.19 —

Geographic
DMA Categorical 𝐾 = 210 𝐺 = 0.75 𝐾 = 211 𝐺 = 0.70
Latitude Numeric 𝜇 = 37.8 𝜎 = 4.8 𝜇 = 37.6 𝜎 = 5.0
Longitude Numeric 𝜇 = -95.2 𝜎 = 19.2 𝜇 = −91.7 𝜎 = 16.9

Notes: For numeric variables, we report the sample mean 𝜇 and standard deviation 𝜎. For categorical variables, we report
the number of categories 𝐾 and the Gini coefficient 𝐺, based on the count data for observations in each category.
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5.2 Derivation of optimal policies. We now demonstrate how the differing nature

of each firm’s discount campaign can be accommodated by our model. In Experiment 1,

the discount was for free shipping, with no assumed marginal costs incurred by the firm.

Because we do not observe the firm’s shipping costs, we assume a flat cost of $7.50 to the

firm when a user makes a purchase in the treatment condition.12 Under this assumption,

the free shipping promotion acts as a level discount in the amount of 𝑘 = 7.5; plugging

this into the optimal targeting function in Eq. (3), assuming marginal costs 𝑐 = 0 and

setting 𝑑 = 0, yields the following expression for the firm’s optimal targeting criteria for

this campaign:

̂𝑓 (𝑥) = ̂𝜏𝑅(𝑥) − 7.5 ̂𝜏𝐶(𝑥) − 7.5𝜇̂𝐶
0 (𝑥)

In Experiment 2, the discount was 20% off the retail price of a user’s entire order; at the

same time, the firm was offering free shipping on all orders, whether or not the user was in

the promotional discount condition. To derive the optimal targeting criteria in this scenario,

the level discount parameter will be 𝑘 = 0, and the percentage discount parameter will be

𝑑 = 0.20. If we assume the firm faces a flat shipping cost of $7.50 per order, the fact that

they offer free shipping to customers in both control and treatment conditions implies they

face an effective marginal cost of 𝑐 = 7.5 on every order. Plugging these values into Eq. (3)

yields the targeting criteria:

̂𝑓 (𝑥) = 0.80 ̂𝜏𝑅(𝑥) − 7.5 ̂𝜏𝐶(𝑥) − 0.20𝜇̂𝑅
0 (𝑥)

5.3 Alternative targeting policies. Before moving on to our empirical findings re-

garding the performance of our proposed targeting policy, it will be instructive to identify

other reasonable policies a firm might use in its place. As a starting place, it makes sense

to consider a non-targeted (or uniform) policy. The profit-maximizing choice for such a pol-

icy will be identical to the optimal policy found in Section 3 but with the individual level

estimates of 𝜏 and 𝜇 replaced by their average values. Using an overline to denote sample

means (e.g., 𝜏𝑅 = E𝑥[𝜏𝑅(𝑥)]), the targeting function for this policy can be written as:

𝑓 (𝑥) = (1 − 𝑑)𝜏𝑅 − (𝑐 + 𝑘)𝜏𝐶 − [𝑑𝜇𝑅
0 + 𝑘𝜇𝐶

0 ]

This approach treats all users the same (i.e., either assigns all users to the control condi-
tion or all users to the treatment condition), but does so in a profit-maximizing way that

12This value is based on standard shipping costs observed on the web and is consistent with shipping costs
according to e-commerce merchants we have spoken with.

20



factors in the cost and discount parameters. Additionally, we consider a well-known policy

that has been mentioned many times in the literature on targeted marketing and uplift

modeling (Lo, 2002, Rzepakowski and Jaroszewicz, 2012), which is to target all customers

with positive treatment effect on conversions:

𝑓 (𝑥) = 𝜏𝐶(𝑥)

This strategy, which we will refer to as the “uplift” approach, will serve as a useful baseline

for considering the value of our decision-theoretic approach relative to existing benchmarks

used for customer targeting.

5.4 Evaluation & Empirical Results. Recall that in Section 4.1, we described how to

estimate the expected profits of a counterfactual targeting policy from experimental data.

We use this same approach for evaluating the profitability of our proposed technique, but

with an additional, nested level of cross-validation to honestly assess our method’s out-of-

sample performance. In particular, we used 100 iterations of Monte Carlo cross-validation,

in which for each iteration, two-thirds of our data are used for both optimizing hyperparam-

eters and training the models needed to estimate a policy’s target function ̂𝑓 ; the remaining

one-third of the data is used to estimate the policy’s expected profits on out-of-sample data

using the doubly-robust technique. Our primary outcome metric is the value of expected

profits E[𝜋̂𝑓 ] given by the DR estimator, averaged across all 100 iterations. Histograms of

the distributions of the profits observed across these iterations are plotted in Figure 1.

To facilitate a comparison between our technique and the uniform approach, we also

compute the within-fold “lift” of our targeting policy over the non-targeted baseline. If 𝜋̂0

are the profits observed from the uniform policy, the level lift of a policy 𝑓 , Δ̂𝑓 , is given as

Δ̂𝑓 ∶= 𝜋̂𝑓 − 𝜋̂0. We also report the lift in percentage terms by comparing the average gains

to the average baseline profit values: Δ̂%
𝑓 ∶= (𝜋̂𝑓 − 𝜋̂0)/𝜋̂0 × 100. Results of these metrics

averaged across Monte Carlo iterations for each of the aforementioned targeting policies

are summarized in Table 6. For relevant comparisons, we report 𝑝-values using a standard

𝑡-test, calculated against the null hypothesis that the mean lift for each policy is exactly

zero.

We remark on several aspects of our empirical results. First, we observe that the uplift

approach, which offers discounts to all users with a positive estimated treatment effect
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Figure 1: Estimated profit per user by policy, estimated over 100 cross-validation splits

(a) Experiment 1 (b) Experiment 2

Table 6: Empirical results for proposed targeting policies

Experiment 1
Policy name % receiving discount Profits E[𝜋̂𝑓 ] Lift E[Δ̂𝑓 ] % Lift E[Δ̂%

𝑓 ]
Uniform 0.0 0.586 (0.003) — —
Uplift 57% 0.594 (0.004) +0.007(0.003)∗∗ +1.39%
Optimal 52% 0.604 (0.004) +0.018(0.003)∗∗∗ +3.16%

Experiment 2
Policy name % receiving discount E[𝜋̂𝑓 ] Lift E[Δ̂𝑓 ] % Lift E[Δ̂%

𝑓 ]
Uniform 0.0 1.56 (0.008) — —
Uplift 82% 1.60 (0.018) +0.046(0.018)∗∗ +3.17%
Optimal 77% 1.65 (0.025) +0.092(0.025)∗∗∗ +6.04%
∗∗∗𝑝 < 0.001, ∗∗𝑝 < 0.01, ∗𝑝 < 0.05, +𝑝 < 0.1. Standard error of the mean for each value is reported in parentheses.

independent of the discount rate, is a profitable targeting strategy in both experiments,

resulting in a profit gain of +1.39% in Experiment 1 and +3.17% lift in Experiment 2.

This need not be a universal characteristic, especially for campaigns with larger discounts

for which this strategy may actually decrease profits. That being said, in this case, uplift

remains a reasonable policy for targeting discount interventions.

Turning to the performance of our proposed targeting policy, we see an even greater

increase in profitability. For Experiment 1, we estimate the use of the optimal policy for

discount targeting will result in a profit gain of +3.16%. Though not reported in the re-

sults table, we find that this increase is significantly larger than the gain observed from

the uplift policy (+0.011, 𝑡 = 9.45, 𝑝 < 0.001). If the firm were to implement this policy over

a time period equivalent to the length of the experiment we observed (i.e., 17 days with

87,000+ total sessions), we estimate they would earn an additional $1, 578 over a strategy

22



that uniformly implements the most profitable treatment arm. While modest, our target-

ing approach clearly has the potential to increase firm profits by non-trivial amounts over

relevant time scales. In Experiment 2, we see the predicted gains of our approach are even

larger. The optimal targeting policy is estimated to result in a +6.04% increase over the

uniform baseline, which is near twice the gains observed from the uplift strategy. (The

direct comparison in level gains between the uplift and optimal policies is also statistically

significant at the 5% level; +0.046, 𝑡 = 2.21, 𝑝 = 0.014.) In dollar terms, we estimate that

our policy, if applied to the 59,000+ users in this experiment, is estimated to be $5, 443

more profitable than a uniform policy; this is an expected gain of nearly $0.10 ($0.092) for

every person that visits the website.

Overall, these empirical results indicate that technographic data can be profitably ex-

ploited for personalized price discrimination. Further, the estimated value of the data in

this context is not far removed from the value of purchase history data that has been cal-

culated in prior research on targeted price promotions. Rossi et al. (1996) estimated that,

with access to purchase history data for the purposes of targeting grocery store coupons de-

livered by direct mail, a firm could earn an additional $0.15 per customer in their database.

Similarly, Khan et al. (2009) estimated that transactional history data can increase firm

profits by 7.8% in a targeted discount campaign delivered by email to customers of a brick-

and-mortar drug store chain. In these cases, however, the firm was required to establish

some sort of prior relationship with each targeted customer to obtain their physical or elec-

tronic mailing address. In the context studied in this project, we demonstrated that firms

can use digital trace data on any customer that visits their website—independent of any

prior purchasing behavior—to profitably target them with promotional incentives.

5.5 Quantifying feature importance. To better understand exactly which variables

play the largest role in determining targeting outcomes in our application, we use post-

hoc model explanation techniques from the literature on interpretable machine learning.

While these techniques are typically used in the context of standard supervised learning,

they can easily be adapted to better understand which features drive targeting decisions in

our context. To do so, we can use the treatment assignments implied by our targeting policy

as the main dependent variable to be explained and assess which predictor variables have

the largest effect on whether or not customers are targeted with a promotion. This analysis
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can inform managers in deciding which type of data to retain for targeting purposes; it can

also add empirical insight to the discussion on public policy and consumer privacy about

what types of data in our context are most consequential for online personalization.

To quantify the relative contribution of different features for promotional targeting in our

context, we will adapt a measure of global variable importance first introduced by Breiman

(2001). The intuition behind this approach is to randomly permute the ordering of data

points in each covariate column and measure over many repetitions how this noise re-

duces model accuracy. While often used as a feature importance measure specifically for

techniques based on bagging such as random forests—for which these measures can be es-

timated with relative computational efficiency using out-of-bag data—there is no reason

permutation-based importance measures cannot be used for arbitrary black-box models.

Indeed, the approach we use here has been previously introduced as “model reliance” by

Fisher et al. (2019), who applied it as a model-agnostic measure of feature importance.

To describe our importance measure concretely: for each fold in our cross-validation pro-

cedure, we fit our targeting algorithm, denoted 𝛿 ̂𝑓 , using data from the fold’s training data.

We then use this algorithm to predict the optimal treatment assignment for each obser-

vation in the fold’s test data. Those treatment assignments are then used to estimate the

counterfactual profits reported in the previous section. We then take the test data 𝑋 and,

for each variable 𝑗 in our dataset, we randomly permute the rows of our data in the 𝑗-th

column; denote the permuted test data 𝑋(𝑗).13 After each permutation, we calculate the

accuracy with which the targeting algorithm based on the permuted test data 𝑋(𝑗) can

predict the treatment assignments of the unpermuted test data 𝑋 . For each fold and for

each feature 𝑗, we perform 100 permutations and calculate the importance of feature 𝑗 by

taking 1 minus the observed accuracy over each permutation and averaging across both
13There are some technical difficulties associated with this approach that are worth mentioning. Our raw

data takes the form of weblogs associated with user website visits which have been formatted into a data
frame containing the columns described in Table 4. However, before actually training any supervised learning
algorithms on our data, this data frame must be processed in several different steps. First, we encode the
categorical data using binary dummy variables for each category within a given variable, and then (as described
in Section 5), we use a truncated SVD procedure to project the categorical variables into a 10-dimensional
continuous vector space. Only after this pre-processing do we train the GBDT algorithms and estimate the
targeting function (as described in Algorithm 1 of the appendix). When we say that we “permute” a feature in
our dataset, this means we actually permute the user-level feature in the original data frame. To measure the
effect of this permutation occurring very early in the ML pipeline, our targeting algorithm has to be engineered
so that it can take a raw observation in the data frame, apply all the pre-processing steps, feed the resulting
output into the GBDT algorithm to predict the user’s response function, and finally derive each user’s CATE
and optimal treatment assignment. Fortunately, modern machine learning tooling—especially the pipeline
functionality provided by the open-source scikit-learn project—has progressed to the point that makes a task
of this complexity relatively painless (Pedregosa et al., 2011).
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permutations and cross-validation folds (this technique is also sometimes referred to as

mean decrease in accuracy).

A common measure of accuracy used for permutation importance scores is the area un-

der the receiver operating characteristic curve (AUC); however, since we are dealing with

purely binary outcomes (whether or not a user is targeted with a promotion), we are un-

able to use the standard AUC metric, which depends on a continuous, thresholded predictor

function. Nonetheless, we can use an analogous measure for binary outcomes, which can

be considered as “balanced accuracy”; this metric is similar to a standard “accuracy” score,

except it gives equal weight to false positives and false negatives so that a completely un-

informative predictor will always have a balanced accuracy of 0.5 (Mosley, 2013, Powers,

2020, Youden, 1950). We use this characteristic of the balanced accuracy score to normalize

our importance measure so that a feature that fully determines targeting outcomes has a

score of one, and a feature that has no effect on targeting outcomes has a score of zero.14

Moving on to the empirical findings from this procedure, we will review feature impor-

tance results for Experiment 1; the findings of this procedure are qualitatively similar to

Experiment 2 and are omitted here. In Figure 2, we have plotted the importance values

for each column in our dataset. (Variance of average importance values across folds is on

the order of 0.001, and thus we have omitted standard error bars.) Looking at the impor-

tance values measured in this analysis, it appears the single most important feature for

determining whether a user is targeted vs. not targeted with promotion is “screen width”.

When considered independently, a user’s screen height is the second most important fea-

ture, followed by a user’s designated market area (DMA). Note that no single variable has an

importance score anywhere near 1; this indicates that our model relies on several of these

variables simultaneously, and the performance of our targeting algorithm is not driven by

any single user characteristic.
14The exact formulae we use are provided below, where—because we average importance across 100 cross-

validation folds—expectation can be considered as being taken over both the randomness of the permutations
of column 𝑗 and the sampling variation due to cross-validation:

𝕀(𝑗) = 2 × (1 − E [BalancedAccuracy (𝛿 ̂𝑓 (𝑋(𝑗)) , 𝛿 ̂𝑓 (𝑋))])

where

BalancedAccuracy (𝛿 ̂𝑓 (𝑋(𝑗)) , 𝛿 ̂𝑓 (𝑋)) = 1
2 ( 𝑇𝑃

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁
𝑇𝑁 + 𝐹𝑃 )

In this formula, 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, and 𝐹𝑁 are true positives, true negatives, false positives, and false negatives
respectively, which can be derived from the confusion matrix comparing the optimal treatment assignment for
each user in the observed test data, 𝛿 ̂𝑓 (𝑋), to the treatment assignments derived from the permuted test data,
𝛿 ̂𝑓 (𝑋(𝑗)).
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Figure 2: Permutation importance of individual features for targeting

Device

⎧{{{{
⎨{{{{⎩

Behavior

⎧{{{{
⎨{{{{⎩

Geography

⎧{{{{
⎨{{{{⎩

One common criticism of permutation-based feature importance measures is that, by

independently permuting individual columns, we break the correlation structure between

features, giving an inaccurate assessment of any individual feature’s importance for predic-

tion (Hooker and Mentch, 2019). This is particularly relevant in our context since, for exam-

ple, the screen width and operating system variables are likely to be very correlated: users

with small screen widths are likely to be using mobile operating systems (iOS, Android) as

opposed to desktop operating systems (Windows, macOS). Permuting these columns inde-

pendently, as done above, requires our model to make predictions in areas of the feature

space that are unrealistic and not likely indicative of our algorithm’s performance on real-

world data.

One way we can minimize this concern is by also permuting sets of features together,

and comparing the marginal benefit in prediction accuracy attributable to various groups

of features. To avoid a combinatorial explosion and to give us a more interpretable un-

derstanding of which factors affect model performance, we employ a grouped variable im-

portance measure, that permutes multiple columns in tandem (Gregorutti et al., 2015). In

particular, for each of the three types of data in our feature set—device-related, behavioral,

and geographic (corresponding to the three subplots in Firgure 2 and also listed in Table
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4)—we can permute all the columns within each group together. To do this, we employ the

same permutation procedure described above for the individual columns, except in this case

we will permute subsets of multiple columns simultaneously. For example, to assess the

importance of device-related columns (screen height, screen width, browser, and operating

system), we take our dataset 𝑋 and permute the rows in all four of these columns to obtain

a permuted dataset 𝑋(𝑑𝑒𝑣𝑖𝑐𝑒). Importantly, we do not permute each column independently,

but rather generate one row-wise permutation that applies across all columns in a given

group. This preserves the correlation structure within each column group, which addresses

a criticism of column-wide permutation procedures that depend on model performance in

regions of the feature space that are unrealistic.

In our grouped variable importance analysis reported in Figure 3, we report the impor-

tance scores computed for each of the three groups of variables separately, but also the

importance scores observed when permuting multiple groups at the same time. For ex-

ample, the importance score of “Device + Behavior” is computed by permuting all seven of

the device-related and behavioral columns in our dataset simultaneously. Combining the

groups of variables in this way allows us to better understand the effect of each type of

variable for driving model performance.

Figure 3: Permutation importance of grouped features for targeting

Examining the importance scores, we can see several patterns worth remarking on.

First, it appears the most important group of variables in our context are those related

to the device that users use to access the retailer’s website. With an importance score of

greater than 0.80, this set of variables is clearly driving most of the targeting algorithm’s
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decisions. Importantly, however, note that the combination of all device-related variables

explains much more of the model’s decisions than any of the variables independently re-

ported in Figure 2, where the single most important variable (screen width) has an impor-

tance score near 0.35. Again, this highlights how—even within each group—there is some

signal being added by separate variables included in our model. Considering the other

types of data, it appears the behavioral and geographical variables have importance scores

near 0.38 and 0.40 respectively. On their own, these types of variables explain some, but

clearly not all the variation in targeting decisions. Even when combined (in the “Behavior +

Geography” entry), the grouped importance score of these variables only reaches 0.49. The

importance scores reported for the “Device + Behavior” and “Device + Geography” entries

are quite similar, reaching 0.92 and 0.96, respectively. Thus, even though most of the tar-

geting algorithm’s decisions are driven by device-related variables, taking away any subset

of variables has a measurable effect on the importance score, suggesting that each variable

is contributing some non-zero amount to model performance.

These findings are useful for better understanding the black-box nature of the highly

non-parametric machine learning algorithm we used for targeting in this application. Ad-

ditionally, this analysis highlights that not all types of data are created equal, especially

when it comes to price discrimination online. This can be important for e-commerce man-

agers, who can use these findings to prioritize the collection or preservation of certain types

of data for targeting purposes (in this case, it appears device-related data is most valuable).

Our findings may also be of interest to policymakers, regulators, and developers of inter-

net protocols when considering what types of data can and should be shared by default

online. As of now, all the variables used in the project were derived from web log data that

is automatically transmitted by HTTP protocols and automatically stored by many web

servers. Given ongoing discussions in the governing bodies of the European Union and

United States about user privacy and algorithmic regulation, these findings may be of in-

terest for demonstrating how different types of data can be used for online personalization.

This project may inform the choices that regulators and developers make when designing

the next generation of legal statutes and communication protocols. For example, the log-

ging of users’ IP addresses is commonly singled out as problematic practice from a privacy

perspective; however, our findings suggest that IP addresses (from which we derived our

geographical variables) are not the most important type data for promotional targeting
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purposes. Instead, data that may seem more innocuous—such as screen width and device

type, that may reveal little about a person’s individual location or identity—may actually

be the most important for enabling price discrimination online (at least among variables

contained in technographic trace data). We believe this highlights an important disconnect

between commonly understood definitions of “privacy” (which often revolve around a per-

son’s identity) and the many other factors that lawmakers might be wise to consider when

regulating the use of data in online settings.

6 Conclusion
In this project, we set out to study the potential for price discrimination in online retail

settings, based solely on user-level technographic trace data. To this end, we developed a

framework for using field experiments and machine learning to optimize e-commerce cus-

tomer targeting strategies in the presence of discount and cost parameters. We found that,

whenever discounts are part of a promotional intervention, the optimal targeting strat-

egy depends on individual-level estimates of both consumers’ baseline response rates and

treatment effects in response to the promotional price. Further, we laid out a procedure for

using machine learning to estimate these parameters from experimental data and applied

our techniques to real-world data. Using counterfactual policy evaluation techniques on

A/B test data from two separate firms, we found that our proposed targeting strategy sig-

nificantly outperforms both non-targeted baselines and industry standard techniques for

customer targeting. Given that our targeting policy is based on non-parametric machine

learning methods, we adapted techniques from the interpretable ML literature to better un-

derstand what is driving the performance of our targeting algorithm. An analysis based on

feature permutation revealed that, while the behavioral and geographic variables inferred

from technographic data have a role to play, the most significant predictors of whether or

not customers are targeted with a promotion are related to the type and size of the device

customers use to access retailers’ websites.

This paper adds important insight to the growing discussions around personalized pric-

ing, with implications for managers, consumer advocates, and policymakers. For man-

agers, our empirical results can be used as a ballpark estimate of the profit gains pos-

sible using this technique. Further, firms can use the methods described in this project

to estimate the profitability of targeting various discount campaigns by merely running

pilot experiments and applying our estimation procedure. We caution that, prior to imple-
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mentation, managers would be wise to consider the potential reputational risks associated

with targeted price discrimination. Even though promotional targeting is far from new,

awareness of and consumer attitudes about the practice may be changing rapidly. As one

proactive measure, prior research has shown that consumers are more willing to purchase

from firms that are transparent in their privacy policies (Tsai et al., 2011), indicating that

openly messaging how online services are personalized can mitigate this downside risk.

For consumer advocates and policymakers, this research highlights the economic value

present in trace forms of technographic data transmitted by standard web protocols, and

demonstrates that such data can be exploited for algorithmic price discrimination. While

prior work has documented the use of this data for customer targeting, this paper is the

first to establish the profitability and measure the value of technographic data in a stan-

dard e-commerce setting. We highlight that this analysis is based on data from websites

that are not large tech companies or national brands, but rather small to medium-sized

businesses. Our findings suggest the practice of using technographic data for promotional

targeting—including for price-related interventions—may become more commonplace as

firms of this type develop the technical expertise required to do so. Our research also high-

lights how even forms of information not obviously subject to statutes that apply to “per-

sonal data” may be used for online personalization. As such, we hope this work contributes

to the broader discussion about promotional targeting on the web and serves as a valuable

empirical analysis of the potential of personalization technologies in online retail.
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APPENDIX
Algorithm 1: Pseudocode for deriving optimal targeting policy from experimental
data

Input: D = {𝑟𝑖, 𝑐𝑖, 𝑥𝑖, 𝑡𝑖}, dataset of revenue, conversion, covariates, and treatment
assignment variables observed in experiment;
𝜉, set of hyperparameters used for GBDT models;

Output: ̂𝑓 , estimated targeting function associated with optimal policy
1 function EstimateResponseFunctions(D, 𝜉)
2 for treatment condition 𝑡 ∈ {0, 1} do
3 𝜇̂𝐶

𝑡 ← train GBDT classifier using data for which 𝑡𝑖 = 𝑡, using
hyperparameters 𝜉

4 𝜇̂𝑅>0
𝑡 ← train GBDT regressor using data for which 𝑡𝑖 = 𝑡 and 𝑟𝑖 > 0, using
hyperparameters 𝜉

5 𝜇̂𝑅
𝑡 ← 𝜇̂𝐶

𝑡 × 𝜇̂𝑅>0
𝑡 , hurdle model for unconditional revenue distribution

6 return estimated predictors 𝜇̂𝐶
0 , 𝜇̂𝑅

0 , 𝜇̂𝐶
1 , 𝜇̂𝑅

1
7 function EstimateCATE(𝜇̂𝐶

0 , 𝜇̂𝑅
0 , 𝜇̂𝐶

1 , 𝜇̂𝑅
1 )

8 ̂𝜏𝐶 ← 𝜇̂𝐶
1 − 𝜇̂𝐶

0
9 ̂𝜏𝑅 ← 𝜇̂𝑅

1 − 𝜇̂𝑅
0

10 return estimated CATE functions ̂𝜏𝐶, ̂𝜏𝑅

11 function EstimateTargetingFunction(D, 𝜉)
12 𝜇̂𝐶

0 , 𝜇̂𝑅
0 , 𝜇̂𝐶

1 , 𝜇̂𝑅
1 ← EstimateResponseFunctions(D, 𝜉)

13 ̂𝜏𝐶, ̂𝜏𝑅 ← EstimateCATE(𝜇̂𝐶
0 , 𝜇̂𝑅

0 , 𝜇̂𝐶
1 , 𝜇̂𝑅

1 )
14 ̂𝑓 ← (1 − 𝑑) ̂𝜏𝑅 − (𝑐 + 𝑘) ̂𝜏𝐶 − [𝑑𝜇̂𝑅

0 + 𝑘𝜇̂𝐶
0 ], plug estimated response and

treatment effect function into theoretically optimal decision formula
15 return estimated targeting function ̂𝑓
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Algorithm 2: Hyperparameter optimization pseudocode

Input: D = {𝑟𝑖, 𝑐𝑖, 𝑥𝑖, 𝑡𝑖}, dataset of revenue, conversion, covariates, and treatment
assignment variables observed in experiment;
Grid(𝜉), grid values over distribution of hyperparameters (see Table 1);
𝐼, number of grid values to search (set to 100 in our applications);
𝐾 , number of folds used for cross-validation (set to 10 in our applications);

Output: 𝜉∗, optimal set of hyperparameters to use for discount policy
Notation:

𝑑, 𝑘, 𝑐, discount and marginal cost parameters;
D𝑘, subset of data in fold 𝑘;
D−𝑘, subset of data excluding fold 𝑘;

1 function EstimateHyperparameters(D, Grid(𝜉), 𝐼, 𝐾)
2 for iteration 𝑖 ∈ [𝐼] do
3 𝜉𝑖 ← random sample of parameters from Grid(𝜉)
4 {D𝑘} ← randomly divide D into 𝐾-folds stratified by treatment condition 𝑡𝑖
5 for fold 𝑘 ∈ [𝐾] do
6 ̂𝑓 ← EstimateTargetingFunction(D−𝑘, 𝜉)

7 𝜋̂𝑘 ← 1
𝑁 ∑𝑁

𝑖=1 (𝑉 (𝛿𝑓 (𝑥𝑖); 𝑥𝑖) + ∑𝑡=0,1
1{𝛿𝑓 (𝑥𝑖)=𝑡}

Pr[𝑡𝑖=𝑡] (𝜋𝑖 − 𝑉(𝑡𝑖; 𝑥𝑖)))

8 𝜋(𝜉𝑖) ← 1
𝐾 ∑𝑘 𝜋̂𝑘 average estimated counterfactual profits across folds

9 𝜉∗ ← arg max𝜉𝑖 𝜋(𝜉𝑖) returns hyperparameters with largest observed profits
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